Advertisement

Frontiers in Energy

, Volume 11, Issue 1, pp 60–66 | Cite as

Defect passivation on cast-mono crystalline screen-printed cells

  • Alison WenhamEmail author
  • Lihui Song
  • Malcolm Abbott
  • Iskra Zafirovska
  • Sisi Wang
  • Brett Hallam
  • Catherine Chan
  • Allen Barnett
  • Stuart Wenham
Research Article

Abstract

Cast-mono crystalline silicon wafers contain crystallographic defects, which can severely impact the electrical performance of solar cells. This paper demonstrates that applying hydrogenation processes at moderate temperatures to finished screen print cells can passivate dislocation clusters within the cast-mono crystalline silicon wafers far better than the hydrogenation received during standard commercial firing conditions. Efficiency enhancements of up to 2% absolute are demonstrated on wafers with high dislocation densities. The impact of illumination to manipulate the charge state of hydrogen during annealing is investigated and found to not be significant on the wafers used in this study. This finding is contrary to a previous study on similar wafers that concluded increased H or H0 from laser illumination was responsible for the further passivation of positively charged dangling bonds within the dislocation clusters.

Keywords

silicon solar cell dislocation cast-mono laser hydrogen passivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takahashi I, Usami N, Kutsukake K, Stokkan G, Morishita K, Nakajima K. Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed. Journal of Crystal Growth, 2010, 312(7): 897–901CrossRefGoogle Scholar
  2. 2.
    Yang K, Schwuttke G H, Ciszek T F. Structural and electrical characterization of crystallographic defects in silicon ribbons. Journal of Crystal Growth, 1980, 50(1): 301–310CrossRefGoogle Scholar
  3. 3.
    Gu X, Yu X, Guo K, Chen L, Wang D, Yang D. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells. Solar Energy Materials and Solar Cells, 2012, 101(2): 95–101CrossRefGoogle Scholar
  4. 4.
    Breitenstein O, Rakotoniaina J P, Al Rifai M H, Werner M. Shunt types in crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 529–538CrossRefGoogle Scholar
  5. 5.
    Hanoka J, Bell O. Electron-beam-induced currents in semiconductors. Annual Review of Materials Science, 1981, 11(1): 353–380CrossRefGoogle Scholar
  6. 6.
    Sopori B, Zhang Y, Ravindra N M. Silicon device processing in Hambients: H-diffusion mechanisms and influence on electronic properties. Journal of Electronic Materials, 2001, 30(12): 1616–1627CrossRefGoogle Scholar
  7. 7.
    Haunschild J, Glatthaar M, Demant M, Nievendick J, Motzko M, Rein S, Weber E R. Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Solar Energy Materials & Solar Cells, 2010, 94(12): 2007–2012CrossRefGoogle Scholar
  8. 8.
    Sopori B. Silicon solar-cell processing for minimizing the influence of impurities and defects. Journal of Electronic Materials, 2002, 31(10): 972–980CrossRefGoogle Scholar
  9. 9.
    Sopori B L, Deng X, Benner J P, Rohatgi A, Sana P, Estreicher S K, Park Y K, Robertson M A. Hydrogen in silicon: a discussion of diffusion and passivation mechanisms. In: IEEE 1st World Conference on Photovoltaic Energy, 1994, 2(95): 159–169Google Scholar
  10. 10.
    Divigalpitiya W M R, Morrison S R, Vercruysse G, Praet A, Gomes W P. Hydrogen passivation of dislocations in silicon. Solar Energy Materials, 1987, 15(2): 141–151CrossRefGoogle Scholar
  11. 11.
    Dubé C, Hanoka J I. Hydrogen passivation of dislocations in silicon. Applied Physics Letters, 1984, 45(10): 1135–1137CrossRefGoogle Scholar
  12. 12.
    Weronek K, Weber J, Queisser H J. Hydrogen passivation of the dislocation-related D-band luminescence in silicon. physica status solidi (a), 1993, 137(2): 543–548CrossRefGoogle Scholar
  13. 13.
    Benton J L, Doherty C J, Ferris S D, Flamm D L, Kimerling L C, Leamy H J. Hydrogen passivation of point defect in silicon. Applied Physics Letters, 1980, 36(8): 670–671CrossRefGoogle Scholar
  14. 14.
    Hallam B, Sugianto A, Mai L, Xu G Q, Chan C, Abbott M, Wenham S, Uruena A, Aleman M, Poortmans J. Hydrogen passivation of laser-induced defects for silicon solar cells. In: Proceedings of IEEE 40th Photovoltaic Specialist Conference, 2014Google Scholar
  15. 15.
    Abbott M, Cousins P, Chen F, Cotter J. Laser-induced defects in crystalline silicon solar cells. In: Proceedings of IEEE Photovoltaic Specialist Conference, 2005Google Scholar
  16. 16.
    Tan J, Cuevas A, Macdonald D, Trupke T, Bardos R, Roth K. On the electronic improvement of multi-crystalline silicon via gettering and hydrogenation. Progress in Photovoltaics: Research and Applications, 2008, 16(2): 129–134CrossRefGoogle Scholar
  17. 17.
    Martinuzzi S, Périchaud I, Warchol F. Hydrogen passivation of defects in multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2003, 80(3): 343–353CrossRefGoogle Scholar
  18. 18.
    Sheoran M, Upadhyaya A, Rohatgi A. Bulk lifetime and efficiency enhancement due to gettering and hydrogenation of defects during cast multicrystalline silicon solar cell fabrication. Solid-State Electronics, 2008, 52(5): 612–617CrossRefGoogle Scholar
  19. 19.
    Song L, Wenham A, Wang S, Hamer P, Ahmmed M S, Hallam B, Mai L, Abbott M, Hawkes E R, Chong A M, Wenham S R. Laser enhanced hydrogen passivation of silicon wafers. International Journal of Photoenergy, 2015, 193892Google Scholar
  20. 20.
    Van de Walle C G, Denteneer P J H, Bar-Yam Y, Pantelides S T. Theory of hydrogen diffusion and reactions in crystalline silicon. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(15): 10791–10808CrossRefGoogle Scholar
  21. 21.
    Chang K, Chadi D. Hydrogen bonding and diffusion in crystalline silicon. Physical Review B: Condensed Matter and Materials Physics, 1989, 40(17): 11644–11653CrossRefGoogle Scholar
  22. 22.
    Herring C, Johnson N M, Van de Walle C G. Energy levels of isolated interstitial hydrogen in silicon. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(12): 125209CrossRefGoogle Scholar
  23. 23.
    Johnson N M, Herring C. Hydrogen immobilization in silicon p-n junctions. Physical Review B: Condensed Matter and Materials Physics, 1988, 38(2): 1581–1584CrossRefGoogle Scholar
  24. 24.
    Fedders P A. Diffusion of hydrogen in different charge states in realistic models of a-Si:H. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(19): 195308CrossRefGoogle Scholar
  25. 25.
    Hamer P, Hallam B, Wenham R, Abbott M. Manipulation of hydrogen charge states for passivation of P-type wafers in photovoltaics. IEEE Journal of Photovoltaics, 2014, 4(5): 1252–1260CrossRefGoogle Scholar
  26. 26.
    Sadoh T, Tsukamoto K, Baba A, Bai D, Kenjo A, Tsurushima T, Mori H, Nakashima H. Deep level of iron-hydrogen complex in silicon. Journal of Applied Physics, 1997, 82(8): 3828–3831CrossRefGoogle Scholar
  27. 27.
    Hallam B J, Hamer P G, Wenham S R, Abbott M A, Sugianto A, Wenham A M, Chan C E, Xu G Q, Kraiem J, Degoulange J, Einhaus R. Advanced bulk defect passivation for silicon solar cells. IEEE Journal of Photovoltaics, 2014, 4(1): 88–95CrossRefGoogle Scholar
  28. 28.
    Nakayashiki K, Rohatgi A, Ostapenko S, Tarasov I. Minority-carrier lifetime enhancement in edge-defined film-fed grown Si through rapid thermal processing-assisted reduction of hydrogen-defect dissociation. Journal of Applied Physics, 2005, 97(2): 024504CrossRefGoogle Scholar
  29. 29.
    Narasimha S, Rohatgi A, Weeber A W. An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Transactions on Electron Devices, 1999, 46(7): 1363–1370CrossRefGoogle Scholar
  30. 30.
    del Alamo J, Eguren J, Luque A. Operating limits of Al-alloyed high–low junctions for BSF solar cells. Solid-State Electron Devices, 1981, 24(5): 415–420CrossRefGoogle Scholar
  31. 31.
    Cheek G C, Mertens R P, Van Overstraeten R, Frisson L. Thick-film metallization for solar cell applications. IEEE Transactions on Electron Devices, 1984, 31(5): 602–609CrossRefGoogle Scholar
  32. 32.
    Hilali M M, Sridharan S, Khadilkar C, Shaikh A, Rohatgi A, Kim S. Effect of glass frit chemistry on the physical and electrical properties of thick-film Ag contacts for silicon solar cells. Journal of Electronic Materials, 2006, 35(11): 2041–2047CrossRefGoogle Scholar
  33. 33.
    Lennon A, Yao Y, Wenham S. Evolution of metal plating for silicon solar cell metallisation. Progress in Photovoltaics: Research and Applications, 2013, 21(7): 1454–1468CrossRefGoogle Scholar
  34. 34.
    Wilking S, Beckh C, Ebert S, Herguth A, Hahn G. Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes. Solar Energy Materials and Solar Cells, 2014, 131(58): 2–8CrossRefGoogle Scholar
  35. 35.
    Wenham A, Hallam B, Song L, Wang S, Abbott M, Chan C, Hamer P, Azmi A, Barnett A, Wenham S R. Efficiency enhancement for screen printed solar cells on Quasi-Mono wafers through advanced hydrogenation. In: Proceedings of the European PV SEC, 2015Google Scholar
  36. 36.
    Hallam B, Tjahjono B, Trupke T, Wenham S. Photoluminescence imaging for determining the spatially resolved implied open circuit voltage of silicon solar cells. Journal of Applied Physics, 2014, 115(4): 044901CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alison Wenham
    • 1
    Email author
  • Lihui Song
    • 2
  • Malcolm Abbott
    • 1
  • Iskra Zafirovska
    • 1
  • Sisi Wang
    • 1
  • Brett Hallam
    • 1
  • Catherine Chan
    • 1
  • Allen Barnett
    • 1
  • Stuart Wenham
    • 1
  1. 1.School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.College of Materials & Environmental EngineeringHangzhou DianZi UniversityHangzhouChina

Personalised recommendations