Advertisement

Frontiers in Energy

, Volume 8, Issue 4, pp 426–433 | Cite as

Observer design for induction motor: an approach based on the mean value theorem

  • Mohamed Yacine HammoudiEmail author
  • Abdelkarim Allag
  • Mohamed Becherif
  • Mohamed Benbouzid
  • Hamza Alloui
Research Article

Abstract

In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dynamics for the induction motor into the linear parametric varying (LPV) system, the differential mean value theorem combined with the sector nonlinearity transformation has been used. Stability conditions based on the Lyapunov function lead to solvability of a set of linear matrix inequalities. The proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results are given to show the performance of the observer design.

Keywords

observer design differential mean value theorem (DMVT) sector nonlinearity transformation linear matrix inequalities (LMI) induction motor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gomez-Gutierrez D, Ramirez-Prado G, Ramirez Trevino A, Ruiz-Leon J. Joint state-mode observer design for switched linear systems. In: Proceedings of IEEE International Conference on Emerging Technologies and Factory Automation. Hamburg, Germany, 2008, 1408–1415Google Scholar
  2. 2.
    Sadaka H, Shafai B, Sipahi R. Robust PI observer design for linear time-delay systems. In: Proceedings of IEEE International Conference on Control Applications, (CCA) & Intelligent Control. Saint Petersburg, Russia, 2009, 1209–1213Google Scholar
  3. 3.
    Guerra R M, Luviano-Juarez A. Rincon-Pasaye J J. On nonlinear observers: a differential algebraic approach. In: Proceedings of American Control Conference. New York, USA, 2007, 1682–1686Google Scholar
  4. 4.
    Babaali M, Egerstedt M, Kamen W E. An observer for linear systems with randomly-switching measurement equations. In: Proceedings of American Control Conference. Arlington, USA, 2003, 1879–1884Google Scholar
  5. 5.
    Rafaralahy H, Zasadzinski M, Boutayeb M, Darouach M. State observer design for descriptor bilinear systems. In: Proceedings of UKACC International Conference on Control. Institution of Engineering and Technology, UK, 1996, 843–848CrossRefGoogle Scholar
  6. 6.
    Ball A A. Khalil H K. High-gain observers in the presence of measurement noise: a nonlinear gain approach. In: Proceedings of IEEE Decision and Control Conference, Cancun, Mexico, 2008, 2288–2293Google Scholar
  7. 7.
    Sayem H, Braiek N B, Hammouri H. Trajectory tracking of bilinear systems using high gain observer. In: Proceedings of International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, 2013, 1–6Google Scholar
  8. 8.
    Hasegawa M. Robust-adaptive-observer design based on γ-positive real problem for sensorless induction-motor drives. IEEE Transactions on Industrial Electronics, 2006, 53(1): 76–85CrossRefGoogle Scholar
  9. 9.
    Proca A B, Keyhani A. Sliding mode flux observer with online rotor parameter estimation for induction motors. IEEE Transactions on Industrial Electronics, 2007, 54(2): 716–723CrossRefGoogle Scholar
  10. 10.
    Shi H, Feng Y. A hybrid sliding mode flux observer for induction motor drive. In: Proceedings of the 30th Chinese Control Conference. Yantai, China, 2011, 762–767Google Scholar
  11. 11.
    Joen S H, Oh K K, Choi J Y. Flux observer with online tuning of stator and rotor resistances for induction motor. IEEE Transactions on Industrial Electronics, 2002, 49(3): 653–664CrossRefGoogle Scholar
  12. 12.
    Savoia A, Mengoni M, Zarri L, Casadei D. A nonlinear luenberger observer for sensorless vector control of induction motors. In: Proceedings of 2011 International Aegean Conference on Electrical Machines and Power Electronics, İstanbul, Turkey 2011, 544–549Google Scholar
  13. 13.
    Park C W, Lee S. Nonlinear observer based control of induction motors. Electrical Engineering, 2007, 90(2): 107–113CrossRefGoogle Scholar
  14. 14.
    Besançon G. Nonlinear Observers and Applications. Springer, 2007Google Scholar
  15. 15.
    Besançon G, Ticlea A. An immersion-based observer design for rank-observable nonlinear systems. IEEE Transactions on Automatic Control, 2007, 52(1): 83–88CrossRefGoogle Scholar
  16. 16.
    Wang Y, Chai T, Zhang Y. State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems. Information Sciences, 2010, 180(24): 5029–5040CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Takagi T, Sugeno M. Fuzzy identification of system and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116–132CrossRefGoogle Scholar
  18. 18.
    Tanaka K, Wang H O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley-Interscience, 2001CrossRefGoogle Scholar
  19. 19.
    Allouche M, Chaabane M, Souissi M, Mehdi D, Tadeo F. State feedback tracking control for indirect field-oriented induction motor using fuzzy approach. International Journal of Automation and Computing, 2013, 10(2): 99–110CrossRefGoogle Scholar
  20. 20.
    Pourgholi M, Majd V J. A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circuits, Systems, and Signal Processing, 2011, 30(6): 1401–1415CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Zemouche A, Boutayeb M, Bara G I. Observer design for nonlinear systems: an approach based on the differential mean value theorem. In: Proceedings of 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, 2005, 12–15Google Scholar
  22. 22.
    Zemouche A, Boutayeb M, Bara G I. Observer for a class of Lipschitz systems with extension to H performance analysis. Systems & Control Letters, 2008, 57(1): 18–27CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Shen Z, Zhao J, Xu J, Gu X S. Nonlinear unknown input observer design by LMI for lipschitz nonlinear systems. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, 3450–3454Google Scholar
  24. 24.
    Ichalal D, Arioui H, Mammar S. Observer design for two-wheeled vehicle: a Takagi-Sugeno approach with unmeasurable premise variables. In: Proceedings of 19th Mediterranean Conference on Control and automation. Corfu, Greece, 2011, 934–939Google Scholar
  25. 25.
    Ichalal D, Marx B, Maquin D, Ragot J. On observer design for nonlinear Takagi-Sugeno systems with unmeasurable premise variable. In: Proceedings of International Symposium on Advanced Control of Industrial Processes. Hangzhou, China, 2011, 353–358Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohamed Yacine Hammoudi
    • 1
    Email author
  • Abdelkarim Allag
    • 1
  • Mohamed Becherif
    • 2
  • Mohamed Benbouzid
    • 3
  • Hamza Alloui
    • 4
  1. 1.MSE Laboratory, Department of Electrical EngineeringUniversity of BiskraBiskraAlgeria
  2. 2.FCLabUniversity of Technology of Belfort-Montbéliard, CNRS 3539, Femto-ST UMR 6174BelfortFrance
  3. 3.LBMSUniversity of BrestBrest Cedex 3France
  4. 4.Ecole militaire polytechniqueUER ELTAlgiersAlgeria

Personalised recommendations