Thermal radiative properties of metamaterials and other nanostructured materials: A review

Review Article

Abstract

The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials-manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

Keywords

metamaterial nanostructured material thermal radiative property radiative energy transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharma A K, Zaidi S H, Logofatu P C, et al. Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics, 2002, 38(12): 1651–1660CrossRefGoogle Scholar
  2. 2.
    Boueke A, Kuhn R, Fath P, et al. Latest results on semitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells, 2001, 65(1–4): 549–553CrossRefGoogle Scholar
  3. 3.
    Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells, 2000, 62(1–2): 63–74CrossRefGoogle Scholar
  4. 4.
    Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 1999, 3(2): 77–184CrossRefGoogle Scholar
  5. 5.
    Heinzel A, Boerner V, Gombert A, et al. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399–2419Google Scholar
  6. 6.
    Sai H, Yugami H, Akiyama Y, et al. Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America A, 2001, 18(7): 1471–1476CrossRefGoogle Scholar
  7. 7.
    Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380–382CrossRefGoogle Scholar
  8. 8.
    Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201–286Google Scholar
  9. 9.
    Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351–411Google Scholar
  10. 10.
    Naqvi S S H, Krukar R H, McNeil J R, et al. Etch depth estimation of large-period silicon gratings with multivariate calibration of rigorously simulated diffraction profiles. Journal of the Optical Society of America A, 1994, 11(9): 2485–2493CrossRefGoogle Scholar
  11. 11.
    Coulombe S A, Minhas B K, Raymond C J, et al. Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B, 1998, 16(1): 80–87CrossRefGoogle Scholar
  12. 12.
    Greffet J-J, Carminati R, Joulain K, et al. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64CrossRefGoogle Scholar
  13. 13.
    Marquier F, Joulain K, Mulet J-P, et al. Coherent spontaneous emission of light by thermal sources. Physical Review B, 2004, 69(15): 155412CrossRefGoogle Scholar
  14. 14.
    Lezec H J, Degiron A, Devaux E, et al. Beam light from a subwavelength aperture. Science, 2002, 297(5582): 820–822CrossRefGoogle Scholar
  15. 15.
    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79CrossRefGoogle Scholar
  16. 16.
    Engheta N, Ziolkowski RW, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006Google Scholar
  17. 17.
    Soukoulis C M, Linden S, Wegener M. Negative refractive index atoptical wavelengths. Science, 2007, 315(5808): 47–49CrossRefGoogle Scholar
  18. 18.
    Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41–48MathSciNetCrossRefGoogle Scholar
  19. 19.
    Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376–379CrossRefGoogle Scholar
  20. 20.
    Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179–296Google Scholar
  21. 21.
    Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514CrossRefGoogle Scholar
  22. 22.
    Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969CrossRefGoogle Scholar
  23. 23.
    Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005, 68(2): 449–521CrossRefGoogle Scholar
  24. 24.
    Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004Google Scholar
  25. 25.
    Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007Google Scholar
  26. 26.
    Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776CrossRefGoogle Scholar
  27. 27.
    Pendry J B, Holden A J, Rubbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084CrossRefGoogle Scholar
  28. 28.
    Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B, 1989, 39(1): 767–770CrossRefGoogle Scholar
  29. 29.
    Shen Y, Jakubczyk D, Xu F, et al. Two-photon fluorescence imaging and spectroscopy of nanostructure organic materials using a photon scanning tunneling microscope. Applied Physics Letters, 2000, 76(1): 1–3CrossRefGoogle Scholar
  30. 30.
    Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703–1718CrossRefGoogle Scholar
  31. 31.
    Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130–142CrossRefGoogle Scholar
  32. 32.
    Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544–3546CrossRefGoogle Scholar
  33. 33.
    Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin: Springer-Verlag, 1988Google Scholar
  34. 34.
    Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61–64CrossRefGoogle Scholar
  35. 35.
    Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin: Springer, 2001Google Scholar
  36. 36.
    Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin: Springer, 2003Google Scholar
  37. 37.
    Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3–15CrossRefGoogle Scholar
  38. 38.
    Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced nearfield interaction. Ultramicroscopy, 2004, 100(3,4): 421–427CrossRefGoogle Scholar
  39. 39.
    Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA, 1993Google Scholar
  40. 40.
    Petit R, ed. Electromagnetic Theory of Gratings. Berlin: Springer, 1980Google Scholar
  41. 41.
    Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer, 2007, 129(1): 79–90CrossRefGoogle Scholar
  42. 42.
    Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201–213Google Scholar
  43. 43.
    Fu K, Chen Y-B, Hsu P-F, et al. Device scaling effect on the spectral-directional absorptance of wafer′s front side. International Journal of Heat and Mass Transfer, 2008, 51(19,20): 4911–4925MATHCrossRefGoogle Scholar
  44. 44.
    Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ: Princeton University Press, 1995MATHGoogle Scholar
  45. 45.
    Sakoda K. Optical Properties of Photonic Crystals. Berlin: Springer-Verlag, 2001Google Scholar
  46. 46.
    Kitttel C. Introduction to Solid State Physics, 8th ed. New York: Wiley, 2004Google Scholar
  47. 47.
    Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK: Institute of Physics, 2001Google Scholar
  48. 48.
    Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423–438Google Scholar
  49. 49.
    Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters, 2002, 80(6): 1097–1099MathSciNetCrossRefGoogle Scholar
  50. 50.
    Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221–234CrossRefGoogle Scholar
  51. 51.
    Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046–1052CrossRefGoogle Scholar
  52. 52.
    Park K, Lee B J, Fu C J, et al. Study of the surface and bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B, 2005, 22(5): 1016–1023CrossRefGoogle Scholar
  53. 53.
    Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294–301CrossRefGoogle Scholar
  54. 54.
    Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390–395MATHCrossRefGoogle Scholar
  55. 55.
    Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E, 2004, 70(4): 047603CrossRefGoogle Scholar
  56. 56.
    Chen Y-Y, Huang Z-M, Wang Q, et al. Photon tunneling in one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics, 2005, 7(9): 519–524CrossRefGoogle Scholar
  57. 57.
    Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on onedimensional photonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587–591CrossRefGoogle Scholar
  58. 58.
    Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis, 2002Google Scholar
  59. 59.
    Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324: 549–551CrossRefGoogle Scholar
  60. 60.
    Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680–686CrossRefGoogle Scholar
  61. 61.
    Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer, 1994, 116(3): 639–645CrossRefGoogle Scholar
  62. 62.
    Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering, 1998, 2(4): 245–260CrossRefGoogle Scholar
  63. 63.
    Sai H, Yugami H, Kanamori Y, et al. Spectrally selective thermal radiators and absorbers with periodic microstructured surfaces for high-temperature applications. Microscale Thermophysical Engineering, 2003, 7(2): 101–115CrossRefGoogle Scholar
  64. 64.
    Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105CrossRefGoogle Scholar
  65. 65.
    Chen Y-B, Zhu Q Z, Wright T L, et al. Bidirectional reflection measurements of periodically microstructured silicon surfaces. International Journal of Thermophysics, 2004, 25(4): 1235–1252CrossRefGoogle Scholar
  66. 66.
    Kreiter M, Oster J, Sambles R, et al. Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Optics Communications, 1999, 168(1–4): 117–122CrossRefGoogle Scholar
  67. 67.
    Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters, 2005, 30(14): 1873–1875CrossRefGoogle Scholar
  68. 68.
    Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1): 83–97CrossRefGoogle Scholar
  69. 69.
    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187CrossRefGoogle Scholar
  70. 70.
    Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496CrossRefGoogle Scholar
  71. 71.
    Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353CrossRefGoogle Scholar
  72. 72.
    Enkrich C, Wegener M, Linden S, et al. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901CrossRefGoogle Scholar
  73. 73.
    Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B, 1996, 53(10): 6318–6336CrossRefGoogle Scholar
  74. 74.
    Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65–74CrossRefGoogle Scholar
  75. 75.
    Dolling D, Enkrich C, Wegener M, et al. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200CrossRefGoogle Scholar
  76. 76.
    Shalaev V M, Cai W S, Chettiar U K, et al. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358CrossRefGoogle Scholar
  77. 77.
    Zhou J F, Zhang L, Tuttle G, et al. Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101(R)Google Scholar
  78. 78.
    Yuan H K, Chettiar U K, Cai W S, et al. A negative permeability material at red light. Optics Express, 2007, 15(3): 1076–1083CrossRefGoogle Scholar
  79. 79.
    Zhang S, Fan W J, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404CrossRefGoogle Scholar
  80. 80.
    Dolling G, Enkrich C, Wegener M, et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science, 2006, 312(5775): 892–894CrossRefGoogle Scholar
  81. 81.
    Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336CrossRefGoogle Scholar
  82. 82.
    Li T, Wang S M, Liu H, et al. Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials. Journal of Applied Physics, 2008, 103(2): 023104CrossRefMathSciNetGoogle Scholar
  83. 83.
    Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research, 2007, 31(6,7): 689–716CrossRefGoogle Scholar
  84. 84.
    Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243–S249CrossRefGoogle Scholar
  85. 85.
    Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411–417CrossRefGoogle Scholar
  86. 86.
    Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics, 2008, 41(9): 095406CrossRefGoogle Scholar
  87. 87.
    Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)Google Scholar
  88. 88.
    Erofeev A F, Kolpakov A V, Makhviladze T M, et al. Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid Thermal Processing Conference, 1995, 181–197Google Scholar
  89. 89.
    Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(1): 99–107CrossRefGoogle Scholar
  90. 90.
    Tada H, Abramson A R, Mann S E, et al. Evaluating the effects of thin film patterns on the temperature distribution of silicon wafers during radiant processing. Optical Engineering, 2000, 39(8): 2296–2304CrossRefGoogle Scholar
  91. 91.
    Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281–1297MathSciNetCrossRefGoogle Scholar
  92. 92.
    Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1988, 391(6668): 667–669CrossRefGoogle Scholar
  93. 93.
    Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845–2848CrossRefGoogle Scholar
  94. 94.
    Marquier F, Greffet J-J, Collin S, et al. Resonant transmission through a metallic film due to coupled modes. Opt Express, 2005, 13(1): 70–76CrossRefGoogle Scholar
  95. 95.
    García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412CrossRefGoogle Scholar
  96. 96.
    Yuan G-H, Wang P, Zhang D-G, et al. Extraordinary transmission through metallic grating with subwavelength slits for s-polarization illumination. Chinese Physics Letters, 2007, 24(6): 1600–1602CrossRefGoogle Scholar
  97. 97.
    Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 1996, 13(9): 1870–1876CrossRefGoogle Scholar
  98. 98.
    Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608–619CrossRefGoogle Scholar
  99. 99.
    Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer, 2008, 130(8): 082404CrossRefGoogle Scholar
  100. 100.
    Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615CrossRefGoogle Scholar
  101. 101.
    Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004, 70(12): 125101CrossRefGoogle Scholar
  102. 102.
    Enoch S, Simon J J, Escoubas L, et al. Simple layer-by-layer photonic crystal for the control of thermal emission. Applied Physics Letters, 2005, 86(26): 261101.CrossRefGoogle Scholar
  103. 103.
    Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460–461: 101–110Google Scholar
  104. 104.
    Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B, 2003, 20(11): 2349–2354CrossRefGoogle Scholar
  105. 105.
    Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904CrossRefGoogle Scholar
  106. 106.
    Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17–26MathSciNetCrossRefGoogle Scholar
  107. 107.
    Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529MathSciNetCrossRefGoogle Scholar
  108. 108.
    Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204–206CrossRefGoogle Scholar
  109. 109.
    Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)Google Scholar
  110. 110.
    Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters, 2006, 96(12): 123903CrossRefGoogle Scholar
  111. 111.
    Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785–8796CrossRefGoogle Scholar
  112. 112.
    Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305CrossRefGoogle Scholar
  113. 113.
    Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B, 2006, 74(24): 245407CrossRefGoogle Scholar
  114. 114.
    Lin K-Q, Wei L-M, Zhang D-G, et al. Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081–3084CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace EngineeringPeking UniversityBeijingChina
  2. 2.G.W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations