Advertisement

Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain

  • Kun Jia
  • Jingcan Liu
  • Yixuan Tu
  • Qiangzi Li
  • Zhiwei Sun
  • Xiangqin Wei
  • Yunjun Yao
  • Xiaotong Zhang
Research Article
  • 4 Downloads

Abstract

The newly launched GF-2 satellite is now the most advanced civil satellite in China to collect high spatial resolution remote sensing data. This study investigated the capability and strategy of GF-2 multispectral data for land use and land cover (LULC) classification in a region of the North China Plain. The pixel-based and object-based classifications using maximum likelihood (MLC) and support vector machine (SVM) classifiers were evaluated to determine the classification strategy that was suitable for GF-2 multispectral data. The validation results indicated that GF-2 multispectral data achieved satisfactory LULC classification performance, and object-based classification using the SVM classifier achieved the best classification accuracy with an overall classification accuracy of 94.33% and kappa coefficient of 0.911. Therefore, considering the LULC classification performance and data characteristics, GF-2 satellite data could serve as a valuable and reliable high-resolution data source for land surface monitoring. Future works should focus on improving LULC classification accuracy by exploring more classification features and exploring the potential applications of GF-2 data in related applications.

Keywords

land use and land cover classification GF-2 North China Plain multispectral data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for the constructive comments and suggestions, all of which have led to great improvements in the presentation of this article. This study was financially supported by the National Natural Science Foundation of China (Grant No. 41571422) and the National Key Research and Development Program of China (No. 2016YFA0600103). Kun Jia and Qiangzi Li conceived and designed the experiments; Kun Jia and Jingcan Liu performed the experiments and drafted the manuscript; XiangqinWei, Yunjun Yao, and Xiaotong Zhang supplied valuable suggestions on improving the method; Jingcan Liu, Yixuan Tu and Zhiwei Sun were responsible for field survey and classification accuracy assessment; All authors read and revised the manuscript. The authors declare no conflict of interest.

References

  1. Adam E, Mutanga O, Odindi J, Abdel-Rahman E M (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int J Remote Sens, 35(10): 3440–3458CrossRefGoogle Scholar
  2. Aguilar M, Bianconi F, Aguilar F, Fernández I (2014). Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens, 6(5): 3554–3582CrossRefGoogle Scholar
  3. Baatz M, Schäpe M (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G, eds. Angewandte Geographische Informations-Verarbeitung XII. Karlsruhe: Wichmann Verlag, 12–23Google Scholar
  4. Benz U C, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens, 58(3–4): 239–258CrossRefGoogle Scholar
  5. Burges C J C (1998). A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov, 2(2): 121–167CrossRefGoogle Scholar
  6. Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015). Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens, 103: 7–27CrossRefGoogle Scholar
  7. Congalton R G, Green K (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Florida: Lewis PublishersGoogle Scholar
  8. Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H, Gardner J A, Adler-Golden SM, Matthew MW, Berk A, Bernstein L S, Acharya P K, Miller D, Lewis P (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: 2002 IEEE International Geoscience and Remote Sensing Symposium & 24th Canadian Symposium on Remote Sensing. Toronto, Canada: IEEE PressGoogle Scholar
  9. Duda R O, Hart P E (1973). Pattern Classification and Scene Analysis. New York: WileyGoogle Scholar
  10. Foody G M (2009). Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ, 113(8): 1658–1663CrossRefGoogle Scholar
  11. Foody G M (2013). Ground reference data error and the mis-estimation of the area of land cover change as a function of its abundance. Remote Sens Lett, 4(8): 783–792CrossRefGoogle Scholar
  12. Foody G M, Campbell N A, Trodd N M, Wood T F (1992). Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm Eng Remote Sensing, 58: 1335–1341Google Scholar
  13. Foody G M, Mathur A (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens, 42(6): 1335–1343CrossRefGoogle Scholar
  14. Friedl M A, Brodley C E (1997). Decision tree classification of land cover from remotely sensed data. Remote Sens Environ, 61(3): 399–409CrossRefGoogle Scholar
  15. Gebbers R, Adamchuk V I (2010). Precision agriculture and food security. Science, 327(5967): 828–831CrossRefGoogle Scholar
  16. Gong P, Wang J, Yu L, Zhao Y C, Zhao Y Y, Liang L, Niu Z G, Huang X M, Fu H H, Liu S, Li C C, Li X Y, Fu W, Liu C X, Xu Y, Wang X Y, Cheng Q, Hu L Y, Yao W B, Zhang H, Zhu P, Zhao Z Y, Zhang H Y, Zheng Y M, Ji L Y, Zhang Y W, Chen H, Yan A, Guo J H, Wang L, Liu X J, Shi T T, Zhu M H, Chen Y L, Yang GW, Tang P, Xu B, Giri C, Clinton N, Zhu Z L, Chen J, Chen J (2013). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM + data. Int J Remote Sens, 34(7): 2607–2654CrossRefGoogle Scholar
  17. Gong P, Yu L, Li C, Wang J, Liang L, Li X, Ji L, Bai Y, Cheng Y, Zhu Z (2016). A new research paradigm for global land cover mapping. Ann GIS, 22(2): 87–102CrossRefGoogle Scholar
  18. Hansen M C, Defries R S, Townshend J R G, Sohlberg R (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21(6–7): 1331–1364CrossRefGoogle Scholar
  19. Jia K, Li Q Z, Tian Y C, Wu B F, Zhang F F, Meng J H (2012). Crop classification using multi-configuration SAR data in the North China Plain. Int J Remote Sens, 33(1): 170–183CrossRefGoogle Scholar
  20. Jia K, Liang S, Zhang N, Wei X Q, Gu X F, Zhao X, Yao Y J, Xie X (2014a). Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J Photogramm Remote Sens, 93: 49–55CrossRefGoogle Scholar
  21. Jia K, Wei X Q, Gu X F, Yao Y J, Xie X H, Li B (2014b). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int, 29(8): 941–951CrossRefGoogle Scholar
  22. Jia K, Wu B F, Li Q Z (2013). Crop classification using HJ satellite multispectral data in the North China Plain. J Appl Remote Sens, 7 (1): 073576CrossRefGoogle Scholar
  23. Jia K, Wu B F, Tian Y C, Zeng Y, Li Q Z (2011). Vegetation classification method with biochemical composition estimated from remote sensing data. Int J Remote Sens, 32(24): 9307–9325CrossRefGoogle Scholar
  24. Li Q, Cao X, Jia K, Zhang M, Dong Q (2014). Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. Int J Remote Sens, 35(16): 6076–6088CrossRefGoogle Scholar
  25. Liang S (2008). Advances in Land Remote Sensing System, Modeling Inversion and Application. Dordrecht: SpringerCrossRefGoogle Scholar
  26. Liu J Y, Liu M L, Zhuang D F, Zhang Z X, Deng X Z (2003). Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D Earth Sci, 46: 373–384CrossRefGoogle Scholar
  27. Lu D, Weng Q (2007). A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens, 28(5): 823–870CrossRefGoogle Scholar
  28. Ma L, Li M, Ma X, Cheng L, Du P, Liu Y (2017). A review of supervised object-based land-cover image classification. ISPRS J Photogramm Remote Sens, 130: 277–293CrossRefGoogle Scholar
  29. Mathur A, Foody G (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. Int J Remote Sens, 29(8): 2227–2240CrossRefGoogle Scholar
  30. Miller S N, Phillip Guertin D, Goodrich D C (2007). Hydrologic modeling uncertainty resulting from land cover misclassification. J Am Water Resour Assoc, 43(4): 1065–1075CrossRefGoogle Scholar
  31. Mountrakis G, Im J, Ogole C (2011). Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens, 66(3): 247–259CrossRefGoogle Scholar
  32. Pal M, Foody G M (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J Sel Top Appl Earth Obs Remote Sens, 5(5): 1344–1355CrossRefGoogle Scholar
  33. Pal M, Mather P M (2005). Support vector machines for classification in remote sensing. Int J Remote Sens, 26(5): 1007–1011CrossRefGoogle Scholar
  34. Running S W (2008). Ecosystem disturbance, carbon, and climate. Science, 321(5889): 652–653CrossRefGoogle Scholar
  35. Schmidt M, Pringle M, Devadas R, Denham R, Tindall D (2016). A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sens, 8(4): 312CrossRefGoogle Scholar
  36. Tso B, Mather P M (2001). Classification Methods for Remotely Sensed Data. London: Taylor and FrancisCrossRefGoogle Scholar
  37. Yan L, Roy D P (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens Environ, 172: 67–86CrossRefGoogle Scholar
  38. Yang J, Gong P, Fu R, Zhang M H, Chen J M, Liang S L, Xu B, Shi J C, Dickinson R (2013). The role of satellite remote sensing in climate change studies. Nat Clim Chang, 3(10): 875–883CrossRefGoogle Scholar
  39. Yu L, Su J, Li C, Wang L, Luo Z, Yan B (2018). Improvement of moderate resolution land use and land cover classification by introducing adjacent region features. Remote Sens, 10(3): 414CrossRefGoogle Scholar
  40. Zhang H, Li Q, Liu J, Shang J, Du X, Zhao L, Wang N, Dong T (2017). Crop classification and acreage estimation in North Korea using phenology features. GISci Remote Sens, 54(3): 381–406CrossRefGoogle Scholar
  41. Zhang L, Jia K, Li X S, Yuan Q Z, Zhao X F (2014). Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sens Lett, 5(1): 73–82CrossRefGoogle Scholar
  42. Zhang M W, Zhou Q B, Chen Z X, Liu J, Zhou Y, Cai C F (2008). Crop discrimination in northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int J Appl Earth Obs Geoinf, 10(4): 476–485CrossRefGoogle Scholar
  43. Zhong L, Hu L, Yu L, Gong P, Biging G S (2016). Automated mapping of soybean and corn using phenology. ISPRS J Photogramm Remote Sens, 119: 151–164CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kun Jia
    • 1
    • 2
  • Jingcan Liu
    • 1
    • 2
  • Yixuan Tu
    • 1
    • 2
  • Qiangzi Li
    • 3
  • Zhiwei Sun
    • 4
  • Xiangqin Wei
    • 3
  • Yunjun Yao
    • 1
    • 2
  • Xiaotong Zhang
    • 1
    • 2
  1. 1.State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of SciencesBeijingChina
  2. 2.Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  3. 3.Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  4. 4.Beijing Geoway Times Software Technology Co., Ltd.BeijingChina

Personalised recommendations