Frontiers of Earth Science

, Volume 10, Issue 3, pp 479–486 | Cite as

Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

  • Babula Jena
Research Article


The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.


island mass effect Antarctic Circumpolar Current Aqua-MODIS SeaWiFS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki S, Fujii N, Ushio S, Yoshikawa Y, Watanabe S, Mizuta G, Fukamachi Y, Wakatsuchi M (2008). Deep western boundary current and southern frontal systems of the Antarctic Circumpolar Current southeast of the Kerguelen Plateau. J Geophys Res, 113(C8): C08038CrossRefGoogle Scholar
  2. Bakker D C E, Nielsdóttir M C, Morris P J, Venables H J, Watson A J (2007). The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res Part II Top Stud Oceanogr, 54(18-20): 2174–2190CrossRefGoogle Scholar
  3. Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F, Christaki U, Corbière A, Durand I, Ebersbach F, Fuda J L, Garcia N, Gerringa L, Griffiths B, Guigue C, Guillerm C, Jacquet S, Jeandel C, Laan P, Lefèvre D, Lo Monaco C, Malits A, Mosseri J, Obernosterer I, Park Y H, Picheral M, Pondaven P, Remenyi T, Sandroni V, Sarthou G, Savoye N, Scouarnec L, Souhaut M, Thuiller D, Timmermans K, Trull T, Uitz J, van Beek P, Veldhuis M, Vincent D, Viollier E, Vong L, Wagener T (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139): 1070–1074CrossRefGoogle Scholar
  4. Boyd P W, Crossley A C, DiTullio G R, Griffiths F B, Hutchins D A, Queguiner B, Sedwick P N, Trull T W (2001). Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: experimental results from the SAZ project. J Geophys Res, 106(C12): 31573–31583CrossRefGoogle Scholar
  5. Boyd P W, Jickells T, Law C S, Blain S, Boyle E A, Buesseler K O, Coale K H, Cullen J J, de Baar H J W, Follows M, Harvey M, Lancelot C, Levasseur M, Owens N P J, Pollard R, Rivkin R B, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson A J (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science, 315(5812): 612–617CrossRefGoogle Scholar
  6. Boyd P W, Watson A J, Law C S, Abraham E R, Trull T, Murdoch R, Bakker D C E, Bowie A R, Buesseler K O, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado M T, McKay R M, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407(6805): 695–702CrossRefGoogle Scholar
  7. Bucciarelli E, Blain S, Tréguer P (2001). Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Mar Chem, 73: 21–36CrossRefGoogle Scholar
  8. Caldeira R M A, Groom S, Miller P, Pilgrim D, Nezlin N P (2002). Seasurface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens Environ, 80(2): 336–360CrossRefGoogle Scholar
  9. Coale K, Johnson K, Chavez F, Buesseler K, Barber R, Brzezinski M, Cochlan W, Millero F, Falkowski P, Bauer J, Wanninkhof R, Kudela R, Altabet M, Hales B, Takahashi T, Landry M, Bidigare R,Wang X, Chase Z, Strutton P, Friederich G, Gorbunov M, Lance V, Hilting A, Hiscock M, Demarest M, Hiscock W, Sullivan K, Tanner S, Gordon R, Hunter C, Elrod V, Fitzwater S, Jones J, Tozzi S, Koblizek M, Roberts A, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown S, Selph K, Sheridan C, Twining B, Johnson Z (2004). Southern Ocean Iron Enrichment Experiment (SOFeX): carbon cycling in high- and low-Si waters. Science, 304(5669): 408–414CrossRefGoogle Scholar
  10. Coale K H, Johnson K S, Fitzwater S E, Gordon R M, Tanner S, Chavez F P, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, CochlanWP, LandryMR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383(6600): 495–501CrossRefGoogle Scholar
  11. De Baar H J W, de Jong J T M, Bakker D C E, Loscher B M, Veth C, Bathmann U, Smetacek V (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373(6513): 412–415CrossRefGoogle Scholar
  12. Donohue K A, Hufford G E, McCartney M S (1999). Sources and transport of the deep western boundary current east of the Kerguelen Plateau. Geophys Res Lett, 26(7): 851–854CrossRefGoogle Scholar
  13. Doty M S, Oguri M (1956). The island mass effect. Journal of the International Council for the Exploration of the Sea, 22: 33–37Google Scholar
  14. Fitch D T, Moore J K (2007). Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone. J Geophys Res, 112(C8): C08006CrossRefGoogle Scholar
  15. Gall M P, Boyd P W, Hall J, Safi K A, Chang H (2001). Phytoplankton processes: Part I. community structure during the Southern Ocean Iron Release Experiment (SOIREE). Deep Sea Res Part II Top Stud Oceanogr, 48(11-12): 2551–2570CrossRefGoogle Scholar
  16. Gordon R M, Coale K H, Johnson K S (1997). Iron distributions in the equatorial Pacific: implications for new production. Limnol Oceanogr, 42(3): 419–431CrossRefGoogle Scholar
  17. Grotti M, Soggia F, Ianni C, Frache R (2005). Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarct Sci, 17(2): 289–300CrossRefGoogle Scholar
  18. Heywood K J, Barton E D, Simpson J H (1990). The effects of flow disturbance by an oceanic island. J Mar Res, 48(1): 55–73CrossRefGoogle Scholar
  19. Heywood K J, Stevens D P, Bigg G R (1996). Eddy formation behind the tropical island of Aldabra. Deep Sea Res Part I Oceanogr Res Pap, 43 (4): 555–578CrossRefGoogle Scholar
  20. Jena B, Kurian P J, Swain D, Tyagi A, Ravindra R (2012). Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: mapping of two unnamed deep seamounts. Int J Appl Earth Obs Geoinf, 16: 1–4CrossRefGoogle Scholar
  21. Jena B, Rao M V, Sahu B K (2006). TRMM derived sea surface temperature in the wake of a cyclonic storm over the central Bay of Bengal. Int J Remote Sens, 27(14): 3065–3072CrossRefGoogle Scholar
  22. Jena B, Sahu S, Kumar A, Swain D (2013). Observation of oligotrophic gyre variability in the south Indian Ocean: environmental forcing and biological response. Deep Sea Res Part I Oceangr Res Pap, 80: 1–10CrossRefGoogle Scholar
  23. Jena B, Swain D, Tyagi A (2010). Application of artificial neural networks for sea-surface wind-speed retrieval from IRS-P4 (MSMR) brightness temperature. IEEE Geosci Remote S, 7(3): 567–571CrossRefGoogle Scholar
  24. Kumar A, Jena B, Vinaya M S, Jayappa K S, Narayana A C, Bhat H G (2012). Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 Ocean Colour Monitor data. Egyp J Remote Sens Space Sci, 15 (1): 67–81Google Scholar
  25. Luo C, Mahowald N M, Del Corral J (2003). Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport and distribution. J Geophys Res, 108(D15): 4447CrossRefGoogle Scholar
  26. Martin J H, Gordon R M, Fitzwater S E (1990). Iron in Antarctic waters. Nature, 345(6271): 156–158CrossRefGoogle Scholar
  27. Maximenko N A, Niiler P P (2005). Hybrid decade-mean global sea level with mesoscale resolution. In: Saxena, N, ed. Recent Advances in Marine Science and Technology 2004. PACON International: 55–59Google Scholar
  28. Memarsadeghi N, Mount D M, Netanyahu N S, Le Moigne J (2007). A fast implementation of the ISODATA clustering algorithm. Int J Comput Geom Appl, 17(1): 71–103CrossRefGoogle Scholar
  29. Minas H J, Minas M (1992). Net community production in high nutrientlow chlorophyll waters of the tropical and Antarctic Oceans: grazing vs. iron hypothesis. Oceanol Acta, 15: 145–162Google Scholar
  30. Mishra R K, Naik R K, Anilkumar N (2015). Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998–2014. Front Earth Sci, 9(4): 742–752CrossRefGoogle Scholar
  31. Mitchell B G, Holm-Hansen O (1991). Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep Sea Res Part I Oceanogr Res Pap, 38(8–9): 1009–1028CrossRefGoogle Scholar
  32. Moore J K, Abbott M R (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res, 105 (C12): 28709–28722CrossRefGoogle Scholar
  33. Moore J K, Abbott M R, Richman J G, SmithWO, Cowles T J, Coale K H, Gardner W D, Barber R T (1999). SeaWiFS satellite ocean color data from the Southern Ocean. Geophys Res Lett, 26(10): 1465–1468CrossRefGoogle Scholar
  34. Nelson D M, Smith W O (1991). Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr, 36 (8): 1650–1661CrossRefGoogle Scholar
  35. Orsi A H, Whitworth T III, Nowlin W D Jr (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I Oceanogr Res Pap, 42(5): 641–673CrossRefGoogle Scholar
  36. Palacios D M (2002). Factors influencing the island-mass effect of the Galápagos Archipelago. Geophys Res Lett, 29(23): 49-1–4CrossRefGoogle Scholar
  37. Park Y H, Fuda J L, Durand I, Naveira Garabato A C (2008). Internal tides and vertical mixing over the Kerguelen Plateau. Deep Sea Res Part II Top Stud Oceanogr, 55(5-7): 582–593CrossRefGoogle Scholar
  38. Sedwick P N, DiTullio G R (1997). Regulation of algal blooms in Antarctic shelf water by the release of iron from melting sea ice. Geophys Res Lett, 24(20): 2515–2518CrossRefGoogle Scholar
  39. Selph K E, Landry M R, Allen C B, Calbet A, Christensen S, Bidigare R R (2001). Microbial community composition and growth dynamics in the Antarctic Polar Front and seasonal ice zone during late spring 1997. Deep Sea Res Part II Top Stud Oceanogr, 48(19-20): 4059–4080CrossRefGoogle Scholar
  40. Signorini S R, McClain C R, Dandonneau Y (1999). Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys Res Lett, 26(20): 3121–3124CrossRefGoogle Scholar
  41. SundaW G (1989). Trace metal interactions with marine phytoplankton. Biol Oceanogr, 6: 411–442Google Scholar
  42. Szeto M, Werdell P J, Moore T S, Campbell J W (2011). Are the worlds oceans optically different? Journal of Geophysical Research, 116 (C00H04), doi:10.1029/2011JC007230CrossRefGoogle Scholar
  43. Takeda S (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393(6687): 774–777CrossRefGoogle Scholar
  44. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science, 300 (5621): 958–961CrossRefGoogle Scholar
  45. Venables H J, Moore C M (2010). Phytoplankton and light limitation in the Southern Ocean: learning from high nutrient high chlorophyll areas. J Geophys Res, 115(C2 C02015): C02015CrossRefGoogle Scholar
  46. Zeldis J (2001). Mesozooplankton community composition, feeding, and export production during SOIREE. Deep Sea Res Part II Top Stud Oceanogr, 48(11-12): 2615–2634CrossRefGoogle Scholar
  47. Zender C S, Bian H, Newman D (2003). Mineral Dust Entrainment and Depositon (DEAD) model: description and 1990s dust climatology. J Geophys Res, 108(D14): 4416CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ESSO-National Centre for Antarctic and Ocean ResearchMinistry of Earth Sciences (MoES)GoaIndia

Personalised recommendations