Advertisement

Frontiers of Earth Science

, Volume 10, Issue 4, pp 761–771 | Cite as

Trace projection transformation: a new method for measurement of debris flow surface velocity fields

  • Yan Yan
  • Peng CuiEmail author
  • Xiaojun Guo
  • Yonggang Ge
Research Article

Abstract

Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

Keywords

debris flow surface velocity field spatiotemporal variation dense optical flow perspective projection transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian R J (2005). Twenty years of particle image velocimetry. Exp Fluids, 39(2): 159–169CrossRefGoogle Scholar
  2. Arattano M, Marchi L (2000). Video-derived velocity disribution along a debris flow surge. Phys Chem Earth, Part B Hydrol Oceans Atmos, 25(9): 781–784CrossRefGoogle Scholar
  3. Arattano M, Marchi L (2005). Measurements of debris flow velocity through cross-correlation of instrumentation data. Nat Hazards Earth Syst Sci, 5(1): 137–142CrossRefGoogle Scholar
  4. Bouguet J Y (2001). Pyramidal implementation of the affine Lucas kanade feature tracker description of the algorithm. Intel Corporation, 5Google Scholar
  5. Calvo B, Savi F (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput Geosci, 35(5): 967–977CrossRefGoogle Scholar
  6. Costa J E, Spicer K R, Cheng R T, Haeni F P, Melcher N B, Thurman E M, Plant W J, Keller W C (2000). Measuring stream discharge by non-contact methods: a proof-of-concept experiment. Geophys Res Lett, 27(4): 553–556CrossRefGoogle Scholar
  7. Cui P (1992). Study on conditions and mechanisms of debris flow initiation by means of experiment. Chin Sci Bull, 37: 759–763Google Scholar
  8. Cui P, Chen X Q, Wang Y Y (2005). Jiangjia Ravine debris flows in south-western China. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena (pp. 565–594). Springer Berlin HeidelbergCrossRefGoogle Scholar
  9. Cui P, Zhu Y Y, Chen J (2007). Relationships between antecedent rainfall and debris flows in Jiangjia ravine, China. In: Cheng-lung Chen, Jon J. Major, editors. Debris-flow hazards mitigationmechanics, prediction, and assessment. Rotterdam: MillpressGoogle Scholar
  10. Dramais G, Le Coz J, Camenen B, Hauet A (2011). Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves. J Hydro-environment Res, 5(4): 301–312CrossRefGoogle Scholar
  11. Farnebäck G (2003). Two-frame motion estimation based on polynomial expansion. In: Bigun J, Gustavsson T, eds. Image Analysis. Berlin Heidelberg: Springer Verlag, 363–370CrossRefGoogle Scholar
  12. Felberg R A, Christou I, Demchuk A M, Malkoff M, Alexandrov A V (2002). Screening for intracranial stenosis with transcranial Doppler: the accuracy of mean flow velocity thresholds. J Neuroimaging, 12(1): 9–14CrossRefGoogle Scholar
  13. Fox J F, Belcher B J (2011). Comparison of macroturbulence measured using decomposition of PIV, ADV and LSPIV data. J Hydraul Res, 49(1): 122–126CrossRefGoogle Scholar
  14. Fujisawa N, Oguma Y (2008). Measurement of pressure field around a NACA0018 airfoil from PIV velocity data. J Vis (Tokyo), 11(4): 281–282CrossRefGoogle Scholar
  15. Fujita I, Kunita Y (2011). Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. J Hydro-environment Res, 5(4): 323–331CrossRefGoogle Scholar
  16. Genevois R, Galgaro A, Tecca P R (2001). Image analysis for debris flow properties estimation. Phys Chem Earth, Part C Sol-terr Planet Sci, 26(9): 623–631Google Scholar
  17. Guo X, Cui P, Li Y (2013). Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia ravine, Yunnan, China. Journal of Mountain Science, 10(2): 305–314CrossRefGoogle Scholar
  18. Hu K, Hu C, Li Y, Cui P (2011a). Characteristics and mechanism of debris-flow surges at Jiangjia ravine. In: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Rome: Casa Editrice Università La Sapienza, 211–217Google Scholar
  19. Hu K, Wei F, Li Y (2011b). Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia ravine, China. Earth Surf Process Landf, 36(9): 1268–1278CrossRefGoogle Scholar
  20. Hürlimann M, Rickenmann D, Graf C (2003). Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J, 40(1): 161–175CrossRefGoogle Scholar
  21. Ilstad T, Elverhøi A, Issler D, Marr J G (2004). Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol, 213(1-4): 415–438CrossRefGoogle Scholar
  22. Itakura Y, Inaba H, Sawada T (2005). A debris-flow monitoring devices and methods bibliography. Nat Hazards Earth Syst Sci, 5(6): 971–977CrossRefGoogle Scholar
  23. Iverson R M (1997). The physics of debris flows. Rev Geophys, 35(3): 245–296CrossRefGoogle Scholar
  24. Kantoush S A, De Cesare G, Boillat J L, Schleiss A J (2008). Flow field investigation in a rectangular shallow reservoir using UVP, LSPIV and numerical modelling. Flow Meas Instrum, 19(3-4): 139–144CrossRefGoogle Scholar
  25. Kantoush S A, Schleiss A J, Sumi T, Murasaki M (2011). LSPIV implementation for environmental flow in various laboratory and field cases. J Hydro-environment Res, 5(4): 263–276CrossRefGoogle Scholar
  26. Kouamé D, Girault JM, Remenieras J P, Chemla J P, LethiecqM(2003). High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part II: multiplephase pipe-flow velocity measurement. IEEE Trans Ultrason Ferroelectr Freq Control, 50(3): 267–278Google Scholar
  27. Lee S, Park C, Kang J, Daichin (2009). Evaluation of wind environment around a residential complex using a PIV velocity field measurement technique. Environ Fluid Mech, 9(6): 655–668CrossRefGoogle Scholar
  28. Leitgeb R, Schmetterer L F, Wojtkowski M, Hitzenberger C K, Sticker M, Fercher A F (2002). Flow velocity measurements by frequency domain short coherence interferometry. Proc SPIE, 4619: 16–21CrossRefGoogle Scholar
  29. Li Y, Liu J, Su F, Xie J, Wang B (2015). Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia gully in China. Landslides, 12(1): 19–28CrossRefGoogle Scholar
  30. Marchi L, Arattano M, Deganutti A M (2002). Ten years of debris-flow monitoring in the Moscardo torrent (Italian Alps). Geomorphology, 46(1-2): 1–17CrossRefGoogle Scholar
  31. Pedersen C J, Huang D, Shure M A, Rollins A M (2007). Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. Opt Lett, 32(5): 506–508CrossRefGoogle Scholar
  32. Ren H, Brecke K M, Ding Z, Zhao Y, Nelson J S, Chen Z (2002). Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt Lett, 27(6): 409–411CrossRefGoogle Scholar
  33. Sederman A J, Mantle M D, Buckley C, Gladden L F (2004). MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson, 166(2): 182–189CrossRefGoogle Scholar
  34. Shi B, Wei J, Pang M (2014). A modified optical flow algorithm based on bilateral-filter and multi-resolution analysis for PIV image processing. Flow Meas Instrum, 38: 121–130CrossRefGoogle Scholar
  35. Sidenbladh H, Black M J, Fleet D J (2000). Stochastic tracking of 3D human figures using 2D image motion. In: Computer vision—ECCV 2000. Berlin Heidelberg: Springer Verlag, 702–718CrossRefGoogle Scholar
  36. Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M (2008). Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express, 16(9): 6008–6025CrossRefGoogle Scholar
  37. Takahashi T (1978). Mechanical characteristics of debris flow. J Hydraul Div, 104: 1153–1169Google Scholar
  38. Tang J B, Hu K H, Zhou G D, Chen H Y, Zhu X H, Ma C (2013). Debris flow impact pressure signal processing by the wavelet analysis. Journal of Sichuan University: (Engineering Science Edition), 45: 8–13 (in Chinese)Google Scholar
  39. Valentino R, Barla G, Montrasio L (2008). Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng, 41(1): 153–177CrossRefGoogle Scholar
  40. Wang G, Wu Q J, Sun G (2008). Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE, 1–8Google Scholar
  41. Wei F Q, Hu K H, Cui P, Chen J, He Y P (2002). Characteristics and origing of debris flow of Jiangjiagou valiey blocking. J Soil Water Conserv, 16: 71–75 (in Chinese)Google Scholar
  42. Ying X, Hu Z, Zha H (2006). Fisheye lenses calibration using straightline spherical perspective projection constraint. In: Narayanan P J, Nayar S K, Shum H Y, eds. Computer Vision–ACCV. Berlin Heidelberg: Springer Verlag, 61–70Google Scholar
  43. Zhang Z, Wang X, Fan T, Xu L (2013). River surface target enhancement and background suppression for unseeded LSPIV. Flow Meas Instrum, 30: 99–111CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yan Yan
    • 1
    • 2
  • Peng Cui
    • 1
    • 3
    Email author
  • Xiaojun Guo
    • 1
    • 2
  • Yonggang Ge
    • 1
  1. 1.Key Laboratory of Mountain Surface Process and Hazards/Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations