Advertisement

Frontiers of Earth Science

, Volume 10, Issue 4, pp 669–682 | Cite as

Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China

  • Guanghui DongEmail author
  • Honggao Liu
  • Yishi Yang
  • Ying Yang
  • Aifeng Zhou
  • Zhongxin Wang
  • Xiaoyan Ren
  • Fahu Chen
Research Article

Abstract

The study of the history of human activities in ancient cities has provided valuable evidences for understanding the evolution of human-land relations during the late Holocene. Numerous ancient cities were discovered through archaeological surveys of the east Qinghai Province, located on the northeastern border of the Tibetan Plateau, China; however, the mystery of when or why these cities were built remains unsolved. As recorded in this paper, we sampled reliable dating materials from 47 ancient cities in the area, determined their ages by radiocarbon dating, and compared the dating results with historical documents and high resolution paleoclimate records to explore the influencing factors for the development of these ancient cities. The 54 radiocarbon dates indicated that most of these cities were built or repaired during the Han Dynasty (202 BC‒AD 220), Tang Dynasty (AD 618‒AD 907), the Five Dynasties and Ten Kingdoms period (AD 907‒AD 960), the Song dynasty (AD 960‒AD 1279), and the Ming Dynasty (AD 1368‒AD 1644). The radiocarbon dates correspond well with historical records of the area. Our work suggests the ancient cities in east Qinghai Province were likely built primarily for military defense, and may have also have been affected by climate change.

Keywords

radiocarbon dating ancient city historic records war climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldenderfer M (2011). Peopling the Tibetan plateau: insights from archaeology. High Alt Med Biol, 12(2): 141–147CrossRefGoogle Scholar
  2. Bamforth D B, Grund B (2012). Radiocarbon Calibration curves, summed probability distributions, and early paleoindian population trends in North America. J Archaeol Sci, 39(6): 1768–1774CrossRefGoogle Scholar
  3. Barton L, Brantingham P J, Ji D (2007). Late Pleistocene climate change and Paleolithic cultural evolution in northern China: Implications from the Last Glacial Maximum. Late Quaternary Climate Change and Human Adaptation in Arid China, 9: 105–128 (in Chinese)CrossRefGoogle Scholar
  4. Brantingham P J, Gao X (2006). Peopling of the northern Tibetan Plateau. World Archaeol, 38(3): 387–414CrossRefGoogle Scholar
  5. Brantingham P J, Gao X, Madsen D B, Rhode D, Perreault C, Woerd J V D, Olsen J W (2013). Late Occupation of the High-Elevation Northern Tibetan Plateau Based on Cosmogenic, Luminescence, and Radiocarbon Ages. Geoarchaeology-an International Journal, 28(5): 413–431CrossRefGoogle Scholar
  6. Bureau of National Cultural Relics (1996). Atlas of Chinese Cultural Relics-Fascicule of Qinghai Province. Beijing: China Cartograghic Publishing House Press (in Chinese)Google Scholar
  7. Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347(6219): 248–250CrossRefGoogle Scholar
  8. Compilation of Chinese Military History (2002). War Chronology of Chinese Imperial (part1, part2). Beijing: The people’s liberation army press (in Chinese)Google Scholar
  9. Cui Y H, Zhang D Z, Du C S (1999). The History of Qinghai Province. Xining: Qinghai People Press (in Chinese)Google Scholar
  10. d’Alpoim Guedes J A, Lu H L, Hein A M, Schmidt A H (2015). Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. Proc Natl Acad Sci USA, 112(18): 5625–5630CrossRefGoogle Scholar
  11. Dong G H, Jia X, Elston R, Chen F H, Li S C, Wang L, Cai L H, An C B (2013). Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J Archaeol Sci, 40(5): 2538–2546CrossRefGoogle Scholar
  12. Dong G H, Wang Z L, Ren L L, Matuzeviciute G M, Wang H, Ren X Y, Chen F H (2014). A comparative study of 14C dating on charcoal and charred seeds from Late Neolithic and Bronze Age sites in Gansu and Qinghai Provinces, NW China. Radiocarbon, 56(1): 157–163CrossRefGoogle Scholar
  13. Dong G H, Yang Y, Zhao Y, Zhou A F, Zhang X J, Li X B, Chen F H (2012). Human settlement and human-environment interactions during the historical period in Zhuanglang County, western Loess Plateau, China. Quat Int, 281: 78–83CrossRefGoogle Scholar
  14. Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005). The archaeologiCal and genetic foundations of the European population during the Late Glacial: implications for ‘Agricultural Thinking’. Camb Archaeol J, 15(2): 193–223CrossRefGoogle Scholar
  15. Gao C, Lei J, Jin F J (2013). The classification and assessment of vulnerability of man-land system of oasis city in arid area. Frontiers of Earth Science, 7(4): 406–416CrossRefGoogle Scholar
  16. Gavin D G (2001). Estimation of inbuilt age in radiocarbon ages of soil charcoal for firehistory studies. Radiocarbon, 43(1): 27–44CrossRefGoogle Scholar
  17. Gu Z Y (2005). Dushi fangyu jiyao. Beijing: Zhonghua Shuju Press (in Chinese)Google Scholar
  18. Hu N K, Li X (2014). Spatial distribution of an ancient agricultural oasis in Juyan, northwestern China. Frontiers of Earth Science, 8(3): 338–350CrossRefGoogle Scholar
  19. Hudson A M, Olsen J W, Quade J (2014). Radiocarbon Dating of Interdune Paleo-Wetland Deposits to Constrain the Age of Mid-to- Late Holocene Microlithic Artifacts from the Zhongba site, Southwestern Qinghai-Tibet Plateau. Geoarchaeology-an International Journal, 29(1): 33–46CrossRefGoogle Scholar
  20. Kennett D J, Breitenbach S F, Aquino V V, Asmerom Y, Awe J, Baldini J U, Bartlein P, Culleton B J, Ebert C, Jazwa C, Macri M J, Marwan N, Polyak V, Prufer K M, Ridley H E, Sodemann H, Winterhalder B, Haug G H (2012). Development and disintegration of Maya political systems in response to climate change. Science, 338(6108): 788–791CrossRefGoogle Scholar
  21. Li Z X (1995). The examination of ancient cities in Qinghai Province, China. Xi’an: Northwestern University Press (in Chinese)Google Scholar
  22. Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H (2009). Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Earth Sci, 52(3): 348–359CrossRefGoogle Scholar
  23. Lu H Y, Xia X C, Liu J Q, Qin X G, Wang F B, Yidilisi A, Zhou L P, Mu G J, Jiao Y X, Li J Z (2010). A preliminary study of chronology for a newly discovered ancient city and five archaeological sites in Lop Nor, China. Chin Sci Bull, 55(1): 63–71CrossRefGoogle Scholar
  24. McFadgen B G (1982). Dating New Zealand archaeology by radiocarbon. N Z J Sci, 25: 379–392Google Scholar
  25. Reimer P J, Bard E, Beck J W, Baillie M G L, Blackwell P G, Bronk Ramsey C, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatte C, Heaton T J, Hoffman D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55(4): 1869–1887CrossRefGoogle Scholar
  26. Rhode D, Brantingham P J, Perreault C, Madsen D B (2014). Mind the gaps: testing for hiatuses in regional radiocarbon date sequences. J Archaeol Sci, 52: 567–577CrossRefGoogle Scholar
  27. Schiffer M B (1986). Radiocarbon dating and the “Old Wood” problem: the case of the Hohokam chronology. J Archaeol Sci, 13(1): 13–30CrossRefGoogle Scholar
  28. Shennan S, Edinborough K (2007). Prehistoric population history: from the Late Glacial to the Late Neolithic in central and northern Europe. J Archaeol Sci, 34(8): 1339–1345CrossRefGoogle Scholar
  29. Stuiver M, Reimer P J (1993). Extended 14C data base and revised CALIB 3.0 14C age Calibration program. Radiocarbon, 35(1): 215–230CrossRefGoogle Scholar
  30. Sun Y J, Lai Z P, Long H, Liu X J, Fan Q S (2010). Quartz OSL dating of archaeological sites in Xiao Qaidam Lake of the NE Qinghai-Tibetan Plateau and its implications for palaeoenvironmental changes. Quat Geochronol, 5(2-3): 360–364CrossRefGoogle Scholar
  31. Williams A N (2012). The use of summed radiocarbon probability distributions in archaeology: a review of methods. J Archaeol Sci, 39(3): 578–589CrossRefGoogle Scholar
  32. Xie Y W, Chen F H, Qi J G (2009). Past desertification processes of Minqin Oasis in arid China. Int J Sustain Dev World Ecol, 16(6): 417–426CrossRefGoogle Scholar
  33. Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F W, Liu J Q, Sigman D M, Peterson L C, Haug G H (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(74-77): 76–77Google Scholar
  34. Yang B, Braeuning A, Shi Y F (2003). Late Holocene temperature fluctuations on the Tibetan Plateau. Quat Sci Rev, 22(21-22): 2335–2344CrossRefGoogle Scholar
  35. Zhang D D, Pei Q, Lee H F, Zhang J, Chang C Q, Li B S, Li J B, Zhang X Y (2015). The pulse of imperial China: a quantitative analysis of long-term geopolitical and climate cycles. Glob Ecol Biogeogr, 24(1): 87–96CrossRefGoogle Scholar
  36. Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, TanM, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Ji J H, Johnson K R (2008). A Test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322(5903): 940–942CrossRefGoogle Scholar
  37. Zhang Q B, Chen G D, Yao T D, Kang X C, Huang J G (2003). A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophys Res Lett, 30(14): 1739–1742CrossRefGoogle Scholar
  38. Zhang Y, Tian Q H, Gou X H, Chen F H, Leavitt SW, Wang Y S (2011). Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. Int J Climatol, 31(3): 371–381CrossRefGoogle Scholar
  39. Zhang Z B, Tian H D, Cazelles B, Kausrud K L, Brauning A, Guo F, Stenseth N C (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10-1900. Proceedings of the Royal Society, 277(1701): 3745–3753CrossRefGoogle Scholar
  40. Zhao M, Kong Q P, Wang H W, Peng M S, Xie X D, Wang W Z, Jia Y, Duan J G, Cai M C, Zhao S N, Ci danpingcuo, Tu Y Q, Wu S F, Yao YG, Bandelt H J, Zhang Y P (2009). Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci USA, 106(50): 21230–21235CrossRefGoogle Scholar
  41. Zhao S C (1986). Ancient cultures in Qinghai Province, China. Xining: Qinghai People’s Press (in Chinese)Google Scholar
  42. Zhao W L, Xie S J (1998). The History of Human Population in China. Beijing: People’s Press (in Chinese)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Guanghui Dong
    • 1
    Email author
  • Honggao Liu
    • 1
    • 2
  • Yishi Yang
    • 1
  • Ying Yang
    • 1
  • Aifeng Zhou
    • 1
  • Zhongxin Wang
    • 3
  • Xiaoyan Ren
    • 3
  • Fahu Chen
    • 1
  1. 1.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  2. 2.College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
  3. 3.Qinghai Provincial Institute of Cultural Relics and ArchaeologyXiningChina

Personalised recommendations