Frontiers of Earth Science

, Volume 9, Issue 4, pp 742–752 | Cite as

Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998—2014

Research Article


This study investigates the effects of light and temperature on the surface water diatoms and chlorophytes, phytoplankton in the Indian Ocean sector of the Southern Ocean (SO) during the austral summer of 1998‒2014. Significant longitudinal variations in hydrographic and biological parameters were observed at the Sub tropical front (STF), Sub Antarctic front (SAF) and Polar front (PF) along 56°E‒58°E. The concentrations of total surface chlorophyll a (Chl a), diatoms, and chlorophytes measured by the National Aeronautics Space Agency (NASA) estimated by the Sea-Viewing Wide Field-of-View Sensors (SeaWiFS), the Moderate Resolution Imaging Spectro Radiometer (MODIS), and the NASA Ocean Biological Model (NOBM) were used in the study. Variations in the concentration of total Chl a was remarkable amongst the fronts during the study period. The contribution of diatoms to the total concentration of surface Chl a increased towards south from the STF to the PF while it decreased in the case of chlorophytes. The maximum photosynthetically active radiation (PAR) was observed at the STF and it progressively decreased to the PF through the SAF. At the PF region the contribution of diatoms to the total Chl a biomass was ≥80%. On the other hand, the chlorophytes showed a contrary distribution pattern with ≥70% of the total Chl a biomass recorded at the STF which gradually decreased towards the PF, mainly attributed to the temperate adaptation. This clearly reveals that the trend of diatoms increased at the STF and decreased at the SAF and the PF. Further, the trend of chlorophytes was increased at the STF, SAF and PF with a shift in the community in the frontal system of the Indian Ocean sector of the SO.


chlorophyll a diatoms chlorophytes SST PAR Southern Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allanson B R, Hart R C, Lutjehams J R E (1981). Observations on the nutrients, chlorophyll, and primary production of the Southern Ocean south of Africa. S Afr J Antarct Res, 10/11: 3–14Google Scholar
  2. Alvain S, Le Quéré C, Bopp L, Racault M F, Beaugrand G, Dessailly D, Buitenhuis E T (2013). Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens Environ, 132: 195–201CrossRefGoogle Scholar
  3. Anderson O R (1976). Respiration and photosynthesis during resting cell formation in Amphora coffeaeformis (A.G) Kutz. Limnological Oceanography, 21(3): 452–456CrossRefGoogle Scholar
  4. Bachy C, Lopez-Garcia P, Vereshchaka A, Moreira D (2011). Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and sea water near the North Pole at the end of the polar night. Frontiers Microbiology, 2, doi: 3389/fmicb.2011.00106Google Scholar
  5. Banse K, English D C (1997). Near-surface phytoplankton pigment from the coast zone color scanner in the sub Antarctic region southeast of New Zealand. Mar Ecol Prog Ser, 156: 51–66CrossRefGoogle Scholar
  6. Bathmann U V, Scharek R, Klaas C, Dubischar C D, Smetacek V (1997). Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 44(1–2): 51–67CrossRefGoogle Scholar
  7. Belkin I M, Gordon A L (1996). Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res, 101(C2): 3675–3696CrossRefGoogle Scholar
  8. Bischoff B, Wiencke C (1995). Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol, 30(1): 19–27CrossRefGoogle Scholar
  9. Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan D D, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilanan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie J M, Grigorriev I V, Van Etten J L (2012). The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol, 13(5): R39CrossRefGoogle Scholar
  10. Bolten J J, Lüning K (1982). Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol, 66(1): 89–94CrossRefGoogle Scholar
  11. Bolton J J (1983). Ecodinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar Biol, 73: 131–138CrossRefGoogle Scholar
  12. Boyd P W (2002). Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol, 38(5): 844–861CrossRefGoogle Scholar
  13. Brown S L, Landry M R (2001). Microbial community structure and biomass in surface waters during a polar front summer bloom along 170°W. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4039–4058CrossRefGoogle Scholar
  14. Dandonneau Y, Deschamps P Y, Nicolas J M, Loisel H, Blanchot J, Montel Y, Thieuleux F, Becu G (2004). Seasonal and inter-annual variability of ocean color and composition of phytoplankton communities in north Atlantic, equatorial pacific and south pacific. Deep Sea Research II, 51: 303–318CrossRefGoogle Scholar
  15. de Baar H J W, Boyd P W, Coale K H, Landry M R, Tsuda A, Assmy P, Bakker D C E, Bozec Y, Barber R T, Brzezinski M A, Buesseler, K O M, Boyé P L, Croot, F, Gervais M Y, Gorbunov P J, Harrison W T, Hiscock P, Laan C, Lancelot C S, Law M, Levasseur A, Marchetti F J, Millero J, Nishioka Y, Nojiri T, Van Oijen U, Riebesell M J A, Rijkenberg H, Saito S, Takeda K R, Timmermans M J W, Veldhuis A (2005). Synthesis of iron fertilization experiments: from the Iron Age in the age of enlightenment. J Geophys Res, 110(9): 1–24Google Scholar
  16. Eppley R W (1972). Temperature and phytoplankton growth in the sea. Fish Bull, 70: 1063–1085Google Scholar
  17. Gall M P, Boyd P W, Hall J, Safi K A, Chang H (2001). Phytoplankton processes. Part 1: community structure during the Southern ocean on Release Experiment (SOIREE). Deep Sea Res Part II Top Stud Oceanogr, 48(11–12): 2551–2570CrossRefGoogle Scholar
  18. Gregg W W, Conkright M E, Ginoux P, O’Reilly J E, Casey N W (2003). Ocean primary production and climate: global decadal changes. Geophys Res Lett, 30(15): 1809–1813CrossRefGoogle Scholar
  19. Hirata T, Hardman-Mountford N J, Barlow R, Lamont T, Brewin R, Smyth T, Aiken J (2009). An inherent optical property approach to the estimation of size-specific photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour: an initial assessment. Prog Oceanogr, 83(1–4): 393–397CrossRefGoogle Scholar
  20. Holliday N P, Read J F (1998). Surface oceanic fronts between Africa and Antarctica. Deep-Sea Res, 45(2–3): 217–238CrossRefGoogle Scholar
  21. Jena B, Sahu S, Avinash K, Swain D (2013). Observation of oligotrophic gyre variability in the south Indian Ocean: environmental forcing and biological response. Deep Sea Res Part I Oceanogr Res Pap, 80: 1–10CrossRefGoogle Scholar
  22. Martinez E, Antoine D, D’Ortenzio F, Genthili B (2009). Climate driven bas in-scale decadal oscillation of oceanic phytoplankton. Science, 326(5957): 1253–1256CrossRefGoogle Scholar
  23. Masotti I, Moulin C, Alvain S, Bopp L, Tagliabue A, Antoine D (2011). Large-scale shifts in phytoplankton groups in the equatorial pacific during ENSO cycles. Biogeosciences, 8(3): 539–550CrossRefGoogle Scholar
  24. Mengelt C, Abbott M R, Barth J A, Letelier R M, Measures C I, Vink S (2001). Phytoplankton pigment distributions in relation to silicic acid, iron and the physical structure across the Antarctic Polar Front, 170ºW, during austral summer. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4081–4100CrossRefGoogle Scholar
  25. Mock T, Gradinger R (1999). Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser, 177: 15–26CrossRefGoogle Scholar
  26. Moore J K, Abbott M R (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res, 105 (C12): 28709–28722CrossRefGoogle Scholar
  27. Moore J K, Abbott M R, Richman J G, Smith W O, Cowles T J, Coale K H, Gardner W D, Barber R T (1999). SeaWiFS satellite ocean color data from the Southern Ocean. Geophys Res Lett, 26(10): 1465–1468CrossRefGoogle Scholar
  28. Morgan-Kiss R M, Ivanov A G, Modla S, Czymmek K, Huner N P A, Priscu J P, Lisle J T, Hanson T E (2008). Identity and physiology of new psychrophilic eukaryotic green alga. Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles, 12(5): 701–711Google Scholar
  29. Morgan-Kiss R M, Priscu J C, Pocock T, Gudynaite-Savitch L, Huner N P A (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev, 70(1): 222–252CrossRefGoogle Scholar
  30. Neven I A, Stefels J, van Heuven S M A C, de Baar H J W, Elzenga J T M (2011). High plasticity in inorganic carbon uptake by Southern Ocean phytoplankton in response to ambient CO2. Deep Sea Res part II, 306: 79–86Google Scholar
  31. Orsi A H, Whitworth T III, Nowlin W D Jr (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res, 42(5): 641–673CrossRefGoogle Scholar
  32. Peters E (1996). Prolonged darkness and diatom mortality: II. imarine temperate species. J Exp Mar Biol Ecol, 207: 43–58CrossRefGoogle Scholar
  33. Peters E, Thomas D N (1996). Prolonged darkness and diatom mortality I: marine Antarctic species. J Exp Mar Biol Ecol, 207: 25–41CrossRefGoogle Scholar
  34. Rousseaux C S, Gregg W W (2012). Climate variability and phytoplankton composition in the pacific Ocean. J Geophys Res, 117(C10): C10006CrossRefGoogle Scholar
  35. Selph K E, Landry M R, Allen C B, Calbet A, Christensen S, Bidigare R R (2001). Microbial community composition and growth dynamics in the Antarctic Polar Front and seasonal ice zone during late spring1997. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4059–4080CrossRefGoogle Scholar
  36. Smetacek V (1985). The annual cycle of Kiel Bight plankton: a long term analysis. Estuaries, 8(2): 145–157CrossRefGoogle Scholar
  37. Smetacek V, de Baar Hein J W, Bathmann U, Lochte K, Rutgers van der L, Michiel M (1997). Ecology and biogeochemistry of the Antarctic circumpolar current during austral spring: a summary of Southern Ocean JGOFS cruise ANT X/6 of RV Polarstern. Deep Sea Research Part II: Topical Studies in Oceanography, 44(1–2): 1–21CrossRefGoogle Scholar
  38. Smyda T (1980). Phytoplankton species succession. In: Morris I, ed. Physiological Ecology of Phytoplankton. University of California (press), 493–570Google Scholar
  39. Strzepek R F, Harrison P J (2004). Photosynthetic architecture differs in coastal and oceanic diatoms. Nature, 431(7009): 689–692CrossRefGoogle Scholar
  40. Suhas S S, Mohan R, Patil S, Jena B, Chacko R, George J V, Noronha S, Singh N, Priya L, Sudhakar M (2015). Oceanic pCO2 in the Indian sector of the Southern Ocean during the austral summer–winter transition phase. Deep Sea Res Part II Top Stud OceanogrGoogle Scholar
  41. Takahashi T, Sweeney C, Hales B, Chipman D W, Newberger T, Goddard J G, Iannuzzi R A, Sutherland S C (2012). The changing carbon cycle in the Southern Ocean. Oceanography (Wash DC), 25 (3): 26–37CrossRefGoogle Scholar
  42. Wiencke C, Bartsch I, Bischoff B, Peters A F, Breeman A M (1994). Temperature requirements and biogeography of Antarctic, Arctic and Amphi equatorial seaweed. Bot Mar, 37(3): 247–259CrossRefGoogle Scholar
  43. Wiencke C, Fischer G (1990). Growth and stable isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser, 65: 283–292CrossRefGoogle Scholar
  44. Wiencke C, tom Dieck I (1989). Temperature requirements for growth and temperature tolerance of macro-algae endemic to the Antarctic region. Mar Ecol Prog Ser, 54: 189–197CrossRefGoogle Scholar
  45. Zeldis J (2001). Mesozooplankton community composition, feeding and export production during SOIREE. Deep Sea Res Part II Top Stud Oceanogr, 48(11–12): 2615–2634CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ESSO-National Centre for Antarctic and Ocean ResearchMinistry of Earth Sciences (MoES)Vasco-da-GamaIndia

Personalised recommendations