Frontiers of Earth Science

, Volume 9, Issue 4, pp 683–690 | Cite as

Observational evidence for atmospheric modulation of the Loop Current migrations

  • D. Lindo-Atichati
  • P. Sangrà
Research Article


Recent modeling studies on the shedding of Loop Current rings suggest that the intensification of the dominant zonal wind field delays the detachment of rings and affects the Loop Current migrations. The atmospheric modulation of the Loop Current migrations is analyzed here using reanalysis winds and altimetry-derived observations. A newly developed methodology is applied to locate the Loop Current front, and a wavelet-based semblance analysis is used to explore correlations with atmospheric forcing. The results show that weakening (intensification) of the zonal wind stress in the eastern Gulf of Mexico is related with the Loop Current excursions to the north (south). Semblance analyses confirm negative correlations between the zonal wind stress and the Loop Current migrations during the past 20 years. The intrusions of the Loop Current might involve an increase of the Yucatan Transport, which would balance the westward Rossby wave speed of a growing loop and delay the ring shedding. The results of this study have consequences for the interpretation of the chaotic processes of ring detachment and Loop Current intrusions, which might be modulated by wind stress.


Loop Current wind stress wavelet analysis altimetry air-sea interactions Gulf of Mexico 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvera-Azcárate A, Barth A, Weisberg R H (2009). The surface circulation of the Caribbean Sea and the Gulf of Mexico as inferred from satellite altimetry. J Phys Oceanogr, 39(3): 640–657CrossRefGoogle Scholar
  2. Bunge L, Ochoa J, Badan A, Candela J, Sheinbaum J (2002). Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension. J Geophys Res, 107(C12): 3233CrossRefGoogle Scholar
  3. Candela J, Tanahara S, Crepon M, Barnier B, Sheinbaum J (2003). Yucatan Channel flow: observations versus CLIPPER ATL6 and MERCATOR PAM models. J Geophys Res, 108(C12): 3385CrossRefGoogle Scholar
  4. Cardona Y, Bracco A (2014). Predictability of mesoscale circulation throughout the water column in the Gulf of Mexico. Deep Sea Res Part II Top Stud Oceanogr, doi: 10.1016/j.dsr2.2014.01.008Google Scholar
  5. Chang Y L, Oey L Y (2010). Why can wind delay the shedding of Loop Current eddies? J Phys Oceanogr, 40(11): 2481–2495CrossRefGoogle Scholar
  6. Chang Y L, Oey L Y (2011). Loop Current cycle: coupled response of the Loop Current with deep flows. J Phys Oceanogr, 41(3): 458–471CrossRefGoogle Scholar
  7. Chang Y L, Oey L Y (2012). Why does the Loop Current tend to shed more eddies in summer and winter? Geophys Res Lett, 39(5): n/a doi: 10.1029/2011GL050773Google Scholar
  8. Chang Y L, Oey L Y (2013a). Loop Current growth and eddy shedding using models and observations: numerical process experiments and satellite altimetry data. J Phys Oceanogr, 43(3): 669–689CrossRefGoogle Scholar
  9. Chang Y L, Oey L Y (2013b). Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea. J Phys Oceanogr, 43(7): 1325–1344CrossRefGoogle Scholar
  10. Chérubin L M, Sturges W, Chassignet E P (2005). Deep flow variability in the vicinity of the Yucatan Straits from a high-resolution numerical simulation. J Geophys Res, 110(C4): C04009CrossRefGoogle Scholar
  11. Cho K, Reid R O, Nowlin W D Jr (1998). Objectively mapped stream function fields on the Texas-Louisiana shelf based on 32 months of moored current meter data. J Geophys Res, 103(C5): 10377–10390CrossRefGoogle Scholar
  12. Clancy R M (1992). Operational modeling: ocean modeling at the Fleet Numerical Oceanography Center. Oceanography (Wash DC), 5(1): 31–35CrossRefGoogle Scholar
  13. Cooper G R J, Cowan D R (2008). Comparing time series using waveletbased semblance analysis. Comput Geosci, 34(2): 95–102CrossRefGoogle Scholar
  14. Cunningham S A, Kanzow T, Rayner D, Baringer M O, Johns W E, Marotzke J, Longworth H R, Grant E M, Hirschi J J M, Beal L, Meinen C S, Bryden H L (2007). Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. Science, 317(5840): 935–938CrossRefGoogle Scholar
  15. DeHaan C J, Sturges W (2005). Deep cyclonic circulation in the Gulf of Mexico. J Phys Oceanogr, 35(10): 1801–1812CrossRefGoogle Scholar
  16. Ezer T, Oey L Y, Lee H C, SturgesW(2003). The variability of currents in the Yucatan Channel: analysis of results from a numerical ocean model. J Geophys Res, 108(C1): 3012CrossRefGoogle Scholar
  17. Fratantoni P S, Lee T N, Podesta G P, Muller-Karger F (1998). The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J Geophys Res, 103(C11): 24759CrossRefGoogle Scholar
  18. Herring J H (2010). Gulf of Mexico hydrographic climatology and method of synthesizing subsurface profiles from the satellite sea surface height anomaly. US. Department of Commerce, National Oceanic and Atmospheric Administration. National Ocean Service, Coastal Survey Development Laboratory. Report 122. 63 ppGoogle Scholar
  19. Hurlburt H, Thompson J D (1980). A Numerical Study of Loop Current Intrusions and Eddy Shedding. J Phys Oceanogr, 10(10): 1611–1651CrossRefGoogle Scholar
  20. Le Hénaff M, Kourafalou V H, Morel Y, Srinivasan A (2012). Simulating the dynamics and intensification of cyclonic Loop Current Frontal Eddies in the Gulf of Mexico. J Geophys Res, 117 (C2): C02034CrossRefGoogle Scholar
  21. Lee H C, Mellor G L (2003). Numerical simulation of the Gulf Stream System: the Loop Current and the deep circulation. J Geophys Res, 108(C2): 3043CrossRefGoogle Scholar
  22. Lin Y, Greatbatch R J, Sheng J (2009). A model study of the vertically integrated transport variability through the Yucatan Channel: role of Loop Current evolution and flow compensation around Cuba. J Geophys Res, 114(C8): C08003CrossRefGoogle Scholar
  23. Lindo-Atichati D, Bringas F, Goni G (2013). Loop Current excursions and ring detachments during 1993–2009. Int J Remote Sens, 34(14): 5042–5053CrossRefGoogle Scholar
  24. Lindo-Atichati D, Bringas F, Goni G, Muhling B, Muller-Karger F E, Habtes S (2012). Varying mesoscale structures influence larval fish distribution in the northern gulf of Mexico. Mar Ecol Prog Ser, 463: 245–257CrossRefGoogle Scholar
  25. Maul G A, Mayer D A, Baig S R (1985). Comparisons between a continuous 3-year current-meter observation at the sill of the Yucatan Strait, satellite measurements of Gulf Loop Current area, and regional sea level. J Geophys Res, 90(C5): 9089–9096CrossRefGoogle Scholar
  26. Muller-Karger F E, Smith J P, Werner S, Chen R, Roffer M, Liu Y, Muhling B A, Lindo-Atichati D, Lamkin J, Cerdeira-Estrada S, Enfield D B (2014). Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog Oceanogr, 134: 54–76CrossRefGoogle Scholar
  27. Müller-Karger F E, Walsh J J, Evans R H, Meyers M B (1991). On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J Geophys Res, 96(C7): 12645–12665CrossRefGoogle Scholar
  28. Muñoz E, Busalacchi A J, Nigam S, Ruiz-Barradas A (2008).Winter and summer structure of the Caribbean low-level jet. J Clim, 21(6): 1260–1276CrossRefGoogle Scholar
  29. Nedbor-Gross R, Dukhovskoy D S, Bourassa M A, Morey S M, Chassignet E P (2014). Investigation of the relationship between the Yucatan Channel transport and the Loop Current area in a multidecadal numerical simulation. Mar Technol Soc J, 48(4): 15–26CrossRefGoogle Scholar
  30. Nof D (2005). The momentum imbalance paradox revisited. J Phys Oceanogr, 35(10): 1928–1939CrossRefGoogle Scholar
  31. Nowlin W D, Jochens A E, DiMarco S F, Reid R O (2000). Physical oceanography. Deepwater Gulf of Mexico environmental and socioeconomic data search and synthesis, Narrative Report, OCS Study MMS 2000-049,Gulf of Mexico OCS Regional Office, Minerals Management Service, U.S. Department of the Interior 1, 60Google Scholar
  32. Nowlin W D, Jochens A E, Reid R O, DiMarco S F (1998). Texas- Louisiana Shelf Circulation and Transport Processes Study: Synthesis Report. Volume I: Technical Report. OCS Study MIMS 98-0035, U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, 502 ppGoogle Scholar
  33. Oey L Y (1996). Simulation of mesoscale variability in the Gulf of Mexico: sensitivity studies, comparison with observations, and trapped wave propagation. J Phys Oceanogr, 26(2): 145–175CrossRefGoogle Scholar
  34. Oey L Y (2004). Vorticity flux through the Yucatan Channel and Loop Current variability in the Gulf of Mexico. J Geophys Res, 109(C10): C10004CrossRefGoogle Scholar
  35. Pichevin T, Nof D (1997). The momentum imbalance paradox. Tellus, Ser A, Dyn Meterol Oceanogr, 49(2): 298–319CrossRefGoogle Scholar
  36. Poveda G, Waylen P R, Pulwarty R S (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol, 234(1): 3–27CrossRefGoogle Scholar
  37. Smith R H, Johns E M, Goni G J, Trinanes J, Lumpkin R, Wood A M, Kelble C R, Cummings S R, Lamkin J T, Privoznik S (2014). Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill. Cont Shelf Res, 77: 118–131CrossRefGoogle Scholar
  38. Sturges W, Evans J C, Welsh S, Holland W (1993). Separation of warmcore rings in the Gulf of Mexico. J Phys Oceanogr, 23(2): 250–268CrossRefGoogle Scholar
  39. Tomczak M, Godfrey J S (2003). Regional Oceanography: An Introduction. Oxford: PergamonGoogle Scholar
  40. Vidal V M V, Vidal F V, Hernández A F, Meza E, Zambrano L (1994). Winter water mass distributions in the western Gulf of Mexico affected by a colliding anticyclonic ring. J Oceanogr, 50(5): 559–588CrossRefGoogle Scholar
  41. Walker N D, Wiseman W J Jr, Rouse L J Jr, Babin A (2005). Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. J Coast Res, 216(6): 1228–1244CrossRefGoogle Scholar
  42. Wang C (2007). Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn, 29(4): 411–422CrossRefGoogle Scholar
  43. Wang C, Lee S (2007). Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys Res Lett, 34 (2):L0 2703CrossRefGoogle Scholar
  44. Xu F H, Chang Y L, Oey L Y, Hamilton P (2013). Loop Current growth and eddy shedding using models and observations: analyses of the July 2011 Eddy-Shedding Event*. J Phys Oceanogr, 43(5): 1015–1027CrossRefGoogle Scholar
  45. Zavala-Hidalgo J, Morey S L, O’Brien J J, Zambudio L (2006). On the Loop Current eddy shedding variability. Atmosfera, 19(001): 8Google Scholar
  46. Zavala-Hidalgo J, Morey S L, O'Brien J J (2003). Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J Geophys Res, 108(C12): 3389CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Engineering Science & Physics, College of Staten IslandCity University of New YorkStaten Island, New YorkUSA
  2. 2.Instituto de Oceanografía y Cambio Global (IOCAG)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations