Frontiers of Earth Science

, Volume 8, Issue 4, pp 625–633 | Cite as

Polarization signature from the FengYun-3 Microwave Humidity Sounder

  • Xiaolei ZouEmail author
  • Xu Chen
  • Fuzhong Weng
Research Article


Microwave Humidity Sounders (MHS) onboard NOAA-15, -16, -17, -18, -19, and EUMETSAT MetOp-A/B satellites provide radiance measurements at a single polarization state at any of five observed frequencies. The Microwave Humidity Sounder (MWHS) onboard the FengYun-3 (FY-3) satellite has a unique instrument design that provides dual polarization measurements at 150 GHz. In this study, the MWHS polarization signal was investigated using observed and modeled data. It is shown that the quasi-polarization brightness temperatures at 150 GHz display a scan angle dependent bias. Under calm ocean conditions, the polarization difference at 150 GHz becomes non-negligible when the scan angle varies from 10° to 45° and reaches a maximum when the scan angle is about 30°. Also, the polarization state is sensitive to surface parameters such as surface wind speed. Under clear-sky conditions, the differences between horizontal and vertical polarization states at 150 GHz increase with decreasing surface wind speed. Therefore, the polarization signals from the cross-track scanning microwave measurements at window channels contain useful information about surface parameters. In addition, the availability of dual polarization measurements allows a one-to-one conversion from antenna brightness temperature to sensor brightness temperature if a cross-polarization spill-over exists.


Microwave Humidity Sounder (MWHS) polarization remote sensing surface properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer P, Schluessel P (1993). Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and special sensor Microwave/Imager data. J Geophys Res, D, Atmospheres, 98(D11): 20737–20759CrossRefGoogle Scholar
  2. Choudhury B J, Major E R, Smith E A, Becker F (1992). Atmospheric effects on SMMR and SSM/1 37 GHz polarization difference over the sahel. Int J Remote Sens, 13(18): 3443–3463CrossRefGoogle Scholar
  3. Dai L, Che T (2009). Cross-platform calibration of SMMR, SSM/I and AMSR-E passive microwave brightness temperature. In: Proceedings of SPIE 7841, Sixth International Symposium on Digital Earth: Data Processing and Applications, 7841(03) DOI: 10.1117/12.873150Google Scholar
  4. Derksen C, Walker A, LeDrew E, Goodison B (2003). Combining SMMR and SSM/I data for time series analysis of central north American snow water equivalent. J Hydrometeorol, 4(2): 304–316CrossRefGoogle Scholar
  5. Gloersen P, Cavalieri D J, Chang A T C, Wilheit T T, Campbell W J, Johannessen O M, Katsaros K B, Kunzi K F, Ross D B, Staelin D, Windsor E P L, Barath F T, Gudmandsen P, Langham E, Ramseier R O (1984). A summary of results from the first NIMBUS 7 SMMR observations. J Geophys Res, D, Atmospheres, 89(D4): 5335–5344CrossRefGoogle Scholar
  6. Goodrum G, Kidwell K B, Winston W (2009). NOAA KLM User’s Guide. National Oceanic and Atmospheric AdministrationGoogle Scholar
  7. Gu S, Guo Yang, Wang Z, Lu N (2012). Calibration analyses for sounding channels of MWHS onboard FY-3A. IEEE Trans Geosci Rem Sens, 50(12): 4885–4891CrossRefGoogle Scholar
  8. Guan L, Zou X, Weng F, Li G (2011). Assessments of FY-3A Microwave Humidity Sounder (MWHS) measurements using NOAA-18 Microwave Humidity Sounder (MHS). J Geophys Res, 116(D10): D10106CrossRefGoogle Scholar
  9. Han Y, Delst P V, Liu Q, Weng F, Yan B, Treadon, Derber J (2006). JCSDA Community Radiative Transfer Model (CRTM)-Version 1. NOAA Tech. Rep. NESDIS 122: 40Google Scholar
  10. Hollinger J P, Peirce J L, Poe G A (1990). SSM/I instrument evaluation. IEEE Trans Geosci Rem Sens, 28(5): 781–790CrossRefGoogle Scholar
  11. Lei L, Zou J, Mao Z (2008). Improving ocean surface wind speed retrieval from SSM/I data by channel combinations. In: Proceeding of SPIE Remote Sensing of Clouds and the Atmosphere 7017(16) DOI: 10.1117/12.799763Google Scholar
  12. Liu Q, Weng F, English S J (2011). An improved fast microwave water emissivity model. IEEE Trans Geosci Rem Sens, 49(4): 1238–1250CrossRefGoogle Scholar
  13. Mitnik L M, Mitnik M L (2010). AMSR-E advanced wind speed retrieval algorithm and its application to marine weather systems. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 3224–3227Google Scholar
  14. Rosenkranz P W (1992). Rough-sea microwave emissivities measured with the SSM/I. IEEE Trans Geosci Rem Sens, 30(5): 1081–1085CrossRefGoogle Scholar
  15. Ruf C S (1998). Constraints on the polarization purity of a stokes microwave radiometer. Radio Sci, 33(6): 1617–1639CrossRefGoogle Scholar
  16. Sasaki Y, Asanuma I, Muneyama K, Naito G, Suzuki T (1987). The dependence of sea-surface microwave emission on wind speed, frequency, incidence angle, and polarzation over the frequency range from 1 to 40 GHz. IEEE Trans Geosci Rem Sens, 25(2): 138–146CrossRefGoogle Scholar
  17. Shibata A (2006). A wind speed retrieval algorithm by combining 6 and 10 GHz data from Advanced Microwave Scanning Radiometer: Wind speed inside hurricanes. J Oceanogr, 62(3): 351–359CrossRefGoogle Scholar
  18. Thompson D R, Elfouhaily T M, Chapron B (1998). Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In: Proceeding of Geoscience and Remote Sensing Symposium, 1998 IEEE International, 3: 1671–1673 DOI: 10.1109/IGARSS.1998.692411Google Scholar
  19. Wang X, Zou X (2012). Quality assessments of Chinese FengYun-3B Microwave Temperature Sounder (MWTS) measurements. IEEE Transcation on Gescience and Remote Sensing, 50(12): 4875–4884CrossRefGoogle Scholar
  20. Wang X, Zou X, Weng F, You R (2012). An assessment of the FY-3A microwave temperature sounder using the NCEP numerical weather prediction model. IEEE Transcation on Gescience and Remote Sensing, 50(12): 4860–4874CrossRefGoogle Scholar
  21. Weng F, Yang H, Zou X (2013). On convertibility from antenna to sensor brightness temperature for ATMS. IEEE transaction on Geoscience and Remote Sensing, 10(4): 771–775CrossRefGoogle Scholar
  22. Wentz F J (1991). A simplified wind vector algorithm for satellite scatteromete. J Atmos Ocean Technol, 8(5): 697–704CrossRefGoogle Scholar
  23. Wentz F J (1997). A well-calibrated ocean algorithm for special sensor microwave / imager. J Geophys Res, 102(C4): 8703–8718CrossRefGoogle Scholar
  24. Wilheit T T (1979). A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Trans Geosci Electron, 17(4): 244–249CrossRefGoogle Scholar
  25. Yang H, Weng F, Lv L, Lu N, Liu G, Bai M, Qian Q, He J, Xu H (2011). The FengYun-3 Microwave Radiation Imager on-orbit verification. IEEE Trans Geosci Rem Sens, 49(11): 4552–4560CrossRefGoogle Scholar
  26. Zhang P, Yang J, Dong C, Lu N, Yang Z, Shi J (2009). General introduction on payloads, ground segment and data application of Fengyun 3A. Front Earth Sci China, 3(3): 367–373CrossRefGoogle Scholar
  27. Zou X, Ma Y, Qin Z (2012a). FengYun-3B Microwave Humidity Sounder (MWHS) data noise characterization and filtering using principle component analysis. IEEE Trans Geosci Rem Sens, 50(12): 4892–4902CrossRefGoogle Scholar
  28. Zou X, Wang X, Weng F, Li G (2012b). Assessments of Chinese FengYun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J Atmos Ocean Technol, 28(10): 1206–1227CrossRefGoogle Scholar
  29. Zou X, Zhao J, Weng F, Qin Z (2012c). Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans Geosci Rem Sens, 50(12): 4994–5003CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center of Data Assimilation for Research and ApplicationNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Department of Earth, Ocean and Atmospheric SciencesFlorida State UniversityTallahasseeUSA
  3. 3.National Environmental Satellite, Data & Information ServiceNational Oceanic and Atmospheric AdministrationCollege ParkUSA

Personalised recommendations