Advertisement

Frontiers of Earth Science

, Volume 9, Issue 2, pp 202–208 | Cite as

The most typical shape of oceanic mesoscale eddies from global satellite sea level observations

  • Zifei Wang
  • Qiuyang Li
  • Liang SunEmail author
  • Song Li
  • Yuanjian Yang
  • Shanshan Liu
Research Article

Abstract

In this research, we normalized the characteristics of ocean eddies by using satellite observation of the Sea Level Anomaly (SLA) data to determine the most typical shape of ocean eddies. This normalization is based on modified analytic functions with nonlinear optimal fitting. The most typical eddy is the Taylor vortex (∼50%), which exhibits a Gaussian-shaped exp(−r 2) SLA and a vorticity distribution of (1 − r 2)exp(−r 2) as a function of the normalized radii r. The larger the amplitude of the eddy, the more likely the eddy is to be Gaussian-shaped. Furthermore, approximately 40% of ocean eddies are combinations of two Gaussian eddies with different parameters, but the composition of these types of eddies is more like a quadratic eddy than a Gaussian one. Only a small portion of oceanic eddies are pure quadratic eddies (<10%) with the same vorticity distribution as a Rankine vortex. We concluded that the Taylor vortex is a good approximation of the typical shape of ocean eddies.

Keywords

sea level anomaly ocean eddies Taylor vortex typical shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaigneau A, Gizolme A, Grados C (2008). Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatiotemporal patterns. Prog Oceanogr, 79(2–4): 106–119CrossRefGoogle Scholar
  2. Chaigneau A, Le Texier M, Eldin G, Grados C, Pizarro O (2011). Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025CrossRefGoogle Scholar
  3. Chelton D B, Gaube P, Schlax M G, Early J J, Samelson R M (2011b). The influence of nonlinear mesoscale eddies on near surface oceanic Chlorophyll. Science, 334(6054): 328–332CrossRefGoogle Scholar
  4. Chelton D B, Schlax M G, Samelson R M (2011a). Global observations of nonlinear mesoscale eddies. Prog Oceanogr, 91(2): 167–216CrossRefGoogle Scholar
  5. Chelton D B, Schlax MG, Samelson RM, de Szoeke R A (2007). Global observations of large oceanic eddies. Geophys Res Lett, 34(15): L15606CrossRefGoogle Scholar
  6. Dong C, Lin X, Liu Y, Nencioli F, Chao Y, Guan Y, Chen D, Dickey T, McWilliams J C (2012). Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J Geophys Res, 117: C00H14Google Scholar
  7. Dong C, McWilliams J C, Liu Y, Chen D (2014). Global heat and salt transports by eddy movement. Nature Communications, 5: 3294Google Scholar
  8. Ducet N, Le Traon P Y, Reverdin G (2000), Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res., 105, 19,477–19,478CrossRefGoogle Scholar
  9. Early J J, Samelson R M, Chelton D B (2011). The evolution and propagation of quasigeostrophic ocean eddies. J Phys Oceanogr, 41(8): 1535–1555CrossRefGoogle Scholar
  10. Hu J, Gan J, Sun Z, Zhu J, Dai M (2011). Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. J Phys Oceanogr, 116: C05016Google Scholar
  11. Isern-Fontanet J, Garcia-Ladona E, Font J (2003). Identification of marine eddies from altimetric maps. J Atmos Ocean Technol, 20(5): 772–778CrossRefGoogle Scholar
  12. Li Q Y, Sun L, Liu S S, Xian T, Yan Y F (2014). A new mononuclear eddy identification method with simple splitting strategies. Remote Sensing Letters, 5(1): 65–72CrossRefGoogle Scholar
  13. Ponte R M, Wunsch C, Stammer D (2007). Spatial mapping of timevariable errors in Jason-1 and TOPEX/Poseidon sea surface height measurements. J Atmos Ocean Technol, 24(6): 1078–1085CrossRefGoogle Scholar
  14. Roemmich D, Gilson J (2001). Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J Phys Oceanogr, 31(3): 675–687CrossRefGoogle Scholar
  15. Sun L (2011). A typhoon-like vortex solution of incompressible 3D inviscid flow. Theor Appl Mech Lett, 1(4): 042003CrossRefGoogle Scholar
  16. Wu J Z, Ma H Y, Zhou M D (2006). Vorticity and Vortex Dynamics. Berlin-Heidelberg: Springer-Verlag. XIV, 776 p., 291 illusGoogle Scholar
  17. Yang G, Wang F, Li Y, Lin P (2013). Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1923Google Scholar
  18. Zhang Z G, Zhang Y, Wang W, Huang R X (2013). Universal structure of mesoscale eddies in the ocean. Geophys Res Lett, 40(14): 3677–3681CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zifei Wang
    • 1
  • Qiuyang Li
    • 1
  • Liang Sun
    • 1
    • 2
    Email author
  • Song Li
    • 1
  • Yuanjian Yang
    • 1
    • 3
  • Shanshan Liu
    • 1
    • 2
  1. 1.Key Laboratory of the Atmospheric Composition and Optical Radiation, CAS, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangZhouChina
  3. 3.Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui ProvinceAnhui Institute of Meteorological SciencesHefeiChina

Personalised recommendations