Frontiers of Earth Science

, Volume 8, Issue 3, pp 385–392 | Cite as

Variations of sea ice in the Antarctic and Arctic from 1997–2006

Research Article

Abstract

Sea ice in polar areas is an important part of the global climate system. In order to obtain variations in sea ice extent for the Antarctic and Arctic, this paper analyzed the Special Sensor Microwave/Imager (SSM/I) sea ice data product dating from March 1, 1997 to December 31, 2006. During this period, the sea ice extent increased in the Antarctic with the trend of (0.5467±0.4933)×104 km2·yr−1, and decreased in the Arctic with the trend of (−7.6125±0.3503)×104 km2·yr−1. In different sectors of the Antarctic, variations of the sea ice extent are different. The sea ice extent increased in the Weddell Sea and Indian Ocean, but decreased in the Ross Sea, Western Pacific Ocean, and Bellingshausen/Amundsen Seas.

Keywords

sea ice concentration (SICN) sea ice extent linear trend 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bian L G, Chen B L, Xin Y F (2007). Polar meteorology and global change. Meteorol Monogr, 33: 3–9 (in Chinese)Google Scholar
  2. Budikova D (2009). Role of Arctic sea ice in global atmospheric circulation: a review. Global Planet Change, 68(3): 149–163CrossRefGoogle Scholar
  3. Cavalieri D J (1992). The validation of geophysical products using multsensor Data. In: Carsey F ed. Microwave Remote Sensing of Sea Ice. Washington, D. C: American Geophysical Union, 68: 232–255Google Scholar
  4. Cavalieri D J, Parkinson C L (2012). Arctic sea ice variability and trends, 1979–2010. Cryophere, 6(4): 881–889CrossRefGoogle Scholar
  5. Comiso J C, Parkinson C L, Gersten R, Stock L (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35:L01703, doi: 10.1029/2007GL031972CrossRefGoogle Scholar
  6. Curry J A, Schramm J L, Ebert E E (1995). Sea ice-albedo climate feedback mechanism. J Clim, 8(2): 240–247CrossRefGoogle Scholar
  7. Gloersen P, Campbell W J (1991). Recent variations in Arctic and Antarctic sea ice covers. Nature, 352(6330): 33–36CrossRefGoogle Scholar
  8. Gloersen P, Campbell W J, Cavalieri D J, Comiso J C, Parkinson C L, Zwally H J (1993). Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978–1987. Ann Glaciol, 17: 149–154Google Scholar
  9. Holland M M, Bitz C M (2003). Polar amplification of climate change in coupled models. Clim Dyn, 21(3–4): 221–232CrossRefGoogle Scholar
  10. Hollinger J P, Peirce J L, Poe G A (1990). SSM/I instrument evaluation. Transaction on Geo science and Remote Sensing, 28,5: 781–790CrossRefGoogle Scholar
  11. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012). Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64: 11595CrossRefGoogle Scholar
  12. Julienne S, Maslanik J, Li X M (1998). An intercomparison of DMSP F11 and F13 derived sea ice products. Remote Sens Environ, 64(2): 132–152CrossRefGoogle Scholar
  13. McBean G, Alekseev G, Chen D, Førland E, Fyfe J, Groisman P Y, King R, Melling H, Vose R, Whitfield P H (2005). Arctic climate: past and present. Arctic Climate Impact Assessment (ACIA) Scientific ReportGoogle Scholar
  14. Overland J, Wang M (2005). The Arcitc climate paradox: the recent decrease of the Arctic Oscillation. Geophys Res Lett, 32(6): L06701, doi: 10.1029/2004GL021752CrossRefGoogle Scholar
  15. Overland J, Wang M (2010). Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A: 1–9CrossRefGoogle Scholar
  16. Parkinson C L, Cavalieri D J (2012). Antarctic sea ice variability and trends, 1979–2010. Cryosphere Discuss, 6(2): 931–956CrossRefGoogle Scholar
  17. Parkinson C L, Cavalieri D J, Gloersen P, Zwally H J, Comiso J C (1999). Arctic sea ice extent, areas, and trends, 1978–1996. J Geophys Res, 104(C9): 20837–20856CrossRefGoogle Scholar
  18. Shokr M, Markus T (2006). Comparison of NASA team2 and AES-York ice concentration algorithms against operational ice chars from the Canadian ice service. IEEE Trans Geosci Rem Sens, 44(8): 2164–2175CrossRefGoogle Scholar
  19. Simmonds I, Jacka T H (1995). Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim, 8(3): 637–647CrossRefGoogle Scholar
  20. Steffen K, Key J, Cavalieri D J, Comiso J C, Gloersen P, Germain K, Rubinstein I (1992). The estimation of geophysical parameters using passive microwave algorithms, In: Carsey F ed. Microwave Remote Sensing of Sea Ice. Washington, D. C: American Geophysical Union, 68: 201–231CrossRefGoogle Scholar
  21. Stroeve J C, Serreze MC, Holland MM, Kay J E, Malanik J, Barrett A P (2012). The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change, 110(3–4): 1005–1027CrossRefGoogle Scholar
  22. Wang J, Ikeda M (2000). Arctic Oscillation and Arctic Sea-Ice Oscillation. Geophys Res Lett, 27(9): 1287–1290CrossRefGoogle Scholar
  23. Wu B, Wang J, Walsh J (2004). Possible feedback of winter sea ice in the Greenland and Barents seas on the local atmosphere. Mon Weather Rev, 132(7): 1868–1876CrossRefGoogle Scholar
  24. Yuan X (2004). ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci, 16(4): 415–425CrossRefGoogle Scholar
  25. Zwally H J, Comiso J C, Parkinson C L, Cavalieri D J, Gloersen P (2002). Varaiability of Antarctic sea ice 1979–1998. Journal of Geophysical Research, 107(C5): 3041, doi: 10.1029/2000JC000732CrossRefGoogle Scholar
  26. Zou X (2012). Climate trend detection and its sensitivity to measurement precision. Advances in Meteorological Science and Technology, 2:41–43 (in Chinese)Google Scholar
  27. Zou X, Zeng Z (2006). A quality control procedure for GPS radio occultation data. J Geophys Res, 111(D2): D02112, doi: 10.1029/2005JD005846Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Atmospheric ScienceNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Department of Earth, Ocean & Atmospheric ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations