Frontiers of Earth Science

, Volume 7, Issue 3, pp 295–309 | Cite as

A geospatial web portal for sharing and analyzing greenhouse gas data derived from satellite remote sensing images

  • Hao Lin
  • Bailang Yu
  • Zuoqi Chen
  • Yingjie Hu
  • Yan Huang
  • Jianping Wu
  • Bin Wu
  • Rong Ge
Research Article

Abstract

Greenhouse gas data collected by different institutions throughout the world have significant scientific values for global climate change studies. Due to the diversity of data formats and different specifications of data access interfaces, most of those data should be first downloaded onto a local machine before they can be used. To overcome this limitation, we present a geospatial web portal for sharing and analyzing greenhouse gas data derived from remote sensing images. As a proof-of-concept, a prototype has also been designed and implemented. The workflow of the web portal contains four processes: data access, data analysis, results visualization, and results output. A large volume of greenhouse gas data have been collected, described, and indexed in the portal, and a variety of data analysis services, such as calculating the temporal variation of regionally averaged column CO2 values and analyzing the latitudinal variations of globally averaged column CO2 values, are integrated into this portal. With the integrated geospatial data and services, researchers can collect and analyze greenhouse gas data online, and can preview and download the analysis results directly from the web portal. The geospatial web portal has been implemented as a web application, and we also used a study case to illustrate this framework.

Keywords

greenhouse gas data geospatial web portal online spatial analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGU (1995). Water Vapor in the Climate System Special Report. Washington, D C: American Geophysical Union Publications OfficeGoogle Scholar
  2. Alkhaled A A, Michalak A M, Kawa S R, Olsen S C, Wang J W (2008). A global evaluation of the regional spatial variability of column integrated CO2 distributions. J Geophys Res, D, Atmospheres, 113(D20): D20303CrossRefGoogle Scholar
  3. Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Rem Sens, 41(2): 253–264CrossRefGoogle Scholar
  4. Bai WG, Zhang X Y, Zhang P (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin Sci Bull, 55(31): 3612–3618CrossRefGoogle Scholar
  5. Barkley M P, Monks P S, Engelen R J (2006). Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys Res Lett, 33(20): L20805CrossRefGoogle Scholar
  6. Blond N, Boersma K F, Eskes H J, van der A R J, van Roozendael M, de Smedt I, Bergametti G, Vautard R (2007). Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. J Geophys Res, D, Atmospheres, 112(D10): D10311CrossRefGoogle Scholar
  7. Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noel S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150CrossRefGoogle Scholar
  8. Goodchild M F, Zhou J Y (2003). Finding geographic information: collection-level metadata. GeoInformatica, 7(2): 95–112CrossRefGoogle Scholar
  9. IPCC (2001). 6.3 Well-mixed Greenhouse Gases. Working Group I: The Scientific Basis IPCC Third Assessment Report-Climate Change 2001, Retrieved 2012, from http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/218.htm Google Scholar
  10. Jacob D (1999). Introduction to Atmospheric Chemistry. New Jersey: Princeton University PressGoogle Scholar
  11. Karl T R, Trenberth K E (2003). Modern global climate change. Science, 302(5651): 1719–1723CrossRefGoogle Scholar
  12. Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007). Historical Overview of Climate Change Science. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University PressGoogle Scholar
  13. Longley P A, Maguire D J (2005). Geoportals. Comput Environ Urban Syst, 29(1): 1Google Scholar
  14. Nativi S, Domenico B (2009). Enabling interoperability for Digital Earth: Earth Science coverage access services. International Journal of Digital Earth 2(Suppl 1): 79–104CrossRefGoogle Scholar
  15. Strow L L, Hannon S E, de Souza-Machado S, Motteler H E, Tobin D (2003). An overview of the AIRS radiative transfer model. IEEE Trans Geosci Rem Sens, 41(2): 303–313CrossRefGoogle Scholar
  16. Tait M G (2005). Implementing geoportals: applications of distributed GIS. Comput Environ Urban Syst, 29(1): 33–47Google Scholar
  17. Titov A, Gordov E, Okladnikov I, Shulgina T (2009). Web-system for processing and visualization of meteorological data for Siberian environment research. International Journal of Digital Earth, 2(Suppl 1): 105–119CrossRefGoogle Scholar
  18. van der Wel F J M (2005). Spatial data infrastructure for meteorological and climatic data. Meteorol Appl, 12(1): 7–8CrossRefGoogle Scholar
  19. Wang K, Jiang H, Zhang X Y, Zhou G M (2011). Analysis of spatial and temporal variations of carbon dioxide over China using SCIAMACHY satellite observations during 2003–2005. Int J Remote Sens, 32(3): 815–832CrossRefGoogle Scholar
  20. Woolf A, Cramer R, Gutierrez M, van Dam K K, Kondapalli S, Latham S, Lawrence B, Lowry R, O’Neill K (2005). Standards-based data interoperability in the climate sciences. Meteorol Appl, 12(1): 9–22CrossRefGoogle Scholar
  21. Woolf A, Haines K, Liu C L (2003). A web service model for climate data access on the grid. Int J High Perform Comput Appl, 17(3): 281–295CrossRefGoogle Scholar
  22. Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009). Global Concentrations of CO2 and CH4 Retrieved from GOSAT: first preliminary results. SOLA, 5: 160–163CrossRefGoogle Scholar
  23. Zhang L, Dong C H, Zhang W J, Zhang P (2008). METOP-on-board super-high spectrum resolution infrared atmospheric sounding interferometer (IASI). Meteorological Science and Technology, 36(5): 639–642 (in Chinese)Google Scholar
  24. Zhang X Y, Jiang H, Wang Y Q, Han Y, Buchwitz M, Schneising O, Burrows J P (2011). Spatial variations of atmospheric methane concentrations in China. Int J Remote Sens, 32(3): 833–847CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Lin
    • 1
  • Bailang Yu
    • 1
  • Zuoqi Chen
    • 1
  • Yingjie Hu
    • 2
  • Yan Huang
    • 1
  • Jianping Wu
    • 1
  • Bin Wu
    • 1
  • Rong Ge
    • 1
  1. 1.Key Laboratory of Geographic Information Science (Ministry of Education)East China Normal UniversityShanghaiChina
  2. 2.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations