Frontiers of Earth Science

, Volume 7, Issue 2, pp 217–226

A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China

  • Xiaodong Huang
  • Hongjie Xie
  • Guoqing Zhang
  • Tiangang Liang
Research Article


Due to the influence of cloud and saturated waveforms, ICESat data contain many contaminated elevation data that cannot be directly used in examining surface elevation and change. This study provides a novel solution for removing bad data and getting clean ICESat data for land applications by using threshold values of reflectivity, saturation, and gain directly from ICESat’s GLAS (Geoscience Laser Alteimeter System) 01, 05, and 06 products. It is found that each laser campaign needs different threshold compositions to assure qualified ICESat data and that bad data removal rates range from 9.6% (laser 2A) to 62.3% (laser 2B) for the test area in the Yili watershed, China. These thresholds would possibly be used in other regions to extract qualified ICESat footprints for land applications. However, it is recommended to use the steps proposed here to further examine the transferability of threshold values for other regions of different elevations and climate regimes. As an example, the resulting ICESat data are applied to examine lake level changes of two lakes in the study area.


ICESat outliers and removal Yili watershed lake level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhang K J, Schwartz F W, Braun A (2007). Verification of the vertical error in C-band SRTM DEM using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans Geosci Rem Sens, 45(1): 36–44CrossRefGoogle Scholar
  2. Braun A, Cheng K, Csatho B, Shum C K (2004). ICESat Laser Altimetry in the Great Lakes. In: Proceedings of the 60th Annual Meeting, Dayton, OH, 409–416Google Scholar
  3. Brenner A C, DiMarzio J R, Zwally H J (2007). Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets. IEEE Trans Geosci Rem Sens, 45(2): 321–331CrossRefGoogle Scholar
  4. Carabajal C C, Harding D J (2005). ICESat validation of SRTM C-band digital elevation models. Geophys Res Lett, 32(22): L22S01CrossRefGoogle Scholar
  5. Carabajal C C, Harding D J (2006). SRTM C-band and ICESat laser altimetry elevation comparisons as a function of tree cover and relief. Photogramm Eng Remote Sensing, 72(3): 287–298Google Scholar
  6. Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007). The shuttle radar topography mission. Rev Geophys, 45(2):RG2004CrossRefGoogle Scholar
  7. Fricker H A, Borsa A, Minster B, Carabajal C, Quinn K, Bills B (2005). Assessment of ICESat performance at the Salar de Uyuni, Bolivia. Geophys Res Lett, 32(21): L21S06CrossRefGoogle Scholar
  8. Fricker H A, Padman L (2006). Ice shelf grounding zone structure from ICESat laser altimetry. Geophys Res Lett, 33(15): L15502CrossRefGoogle Scholar
  9. Huang X, Xie H, Liang T, Yi D (2011). Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int J Remote Sens, 32(18): 5177–5196CrossRefGoogle Scholar
  10. Kwok R, Cunningham G F, Zwally H J, Yi D (2006). ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. J Geophys Res: Oceans, 111: C06006CrossRefGoogle Scholar
  11. Kwok R, Cunningham G F, Zwally H J, Yi D (2007). Ice, cloud, and land elevation satellite (ICESat) over Arctic sea ice: retrieval of freeboard. J Geophys Res: Oceans, 112: C12013CrossRefGoogle Scholar
  12. Kwok R, Zwally H J, Yi D (2004). ICESat observations of Arctic sea ice: a first look. Geophys Res Lett, 31(16): L16401CrossRefGoogle Scholar
  13. Li Y S, Wu P F (2008). Study on the changes in Ebinur Lake based on the MODIS data. J Water Res & Engi, 19: 110–112Google Scholar
  14. Ma D, Zhang L, Wang Q, Zeng Q, Jiang F, Wang Y, Hu R (2003). Influence of the warm-wet climate on Sailimu Lake. J Glaciology and Geocryology, 25(2): 219–223Google Scholar
  15. Ma L, Wu J, Yu H, Zeng H, Abuduwaili J (2011). The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas, 40(3): 518–524CrossRefGoogle Scholar
  16. Magruder L A, Webb C E, Urban T J, Silverberg E C, Schutz B E (2007). ICESat altimetry data product verification at White Sands Space Harbor. IEEE Trans Geosci Rem Sens, 45(1): 147–155CrossRefGoogle Scholar
  17. Martin C F, Thomas R H, Krabill W B, Manizade S S (2005). ICESat range and mounting bias estimation over precisely-surveyed terrain. Geophys Res Lett, 32(21): L21S07CrossRefGoogle Scholar
  18. Moholdt G, Nuth C, Hagen J O, Kohler J (2010). Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens Environ, 114(11): 2756–2767CrossRefGoogle Scholar
  19. Rodriguez E, Morris C S, Belz J E (2006). A global assessment of the SRTM performance. Photogramm Eng Remote Sensing, 72: 249–260Google Scholar
  20. Schutz B E, Zwally H J, Shuman C A, Hancock D, DiMarzio J P (2005). Overview of the ICESat Mission. Geophys Res Lett, 32(21): L21S01CrossRefGoogle Scholar
  21. Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim Change, 2(10): 725–731CrossRefGoogle Scholar
  22. Sun G, Ranson K J, Kimes D S, Blair J B, Kovacs K (2008). Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data. Remote Sens Environ, 112(1): 107–117CrossRefGoogle Scholar
  23. Xie H, Ackley S F, Yi D, Zwally H J, Wagner P, Weissling B, Lewis M, Ye K (2011). Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Research Part II: Topical Studies in Oceanography, 58: 1039–1051CrossRefGoogle Scholar
  24. Xing Y, de Gier A, Zhang J, Wang L (2010). An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: a case study in Changbai Mountains, China. Int J Appl Earth Obs Geoinf, 12(5): 385–392CrossRefGoogle Scholar
  25. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel D B, Joswiak D (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim. Change, 2(9): 663–667Google Scholar
  26. Yi D, Zwally H J, Sun X (2005). ICESat measurement of Greenland ice sheet surface slope and roughness. Ann Glaciol, 42(1): 83–89CrossRefGoogle Scholar
  27. Zhang G, Xie H, Duan S, Tian M, Yi D (2011a).Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J Appl Remote Sens, 5(1): 053532–15CrossRefGoogle Scholar
  28. Zhang G, Xie H, Kang S, Yi D, Ackley S F (2011b). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens Environ, 115(7): 1733–1742CrossRefGoogle Scholar
  29. Zhang G, Xie H, Yao T, Liang T, Kang S (2012). Snow cover dynamics of four lake basins over Tibetan Plateau using time series MODIS data (2001–2010). Water Resour Res, 48(10): W10529CrossRefGoogle Scholar
  30. Zwally H J, Jun L I, Brenner A C, Beckley M, Cornejo H G, Dimarzio J, Giovinetto M B, Neumann T A, Robbins J, Saba J L, Donghui Y I, Wang W (2011). Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 200307 versus 19922002. J Glaciol, 57(201): 88–102CrossRefGoogle Scholar
  31. Zwally H J, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002). ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 34(3–4): 405–445CrossRefGoogle Scholar
  32. Zwally H J, Yi D H, Kwok R, Zhao Y H (2008). ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J Geophys Res: Oceans, 113(C2): C02S15CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaodong Huang
    • 1
  • Hongjie Xie
    • 2
  • Guoqing Zhang
    • 3
  • Tiangang Liang
    • 1
  1. 1.State Key Laboratory of Grassland Agro-ecology System, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Laboratory for Remote Sensing and Geoinformatics, Department of Geological SciencesUniversity of Texas at San AntonioSan AntonioUSA
  3. 3.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations