Frontiers of Earth Science

, Volume 6, Issue 2, pp 122–139 | Cite as

Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years

  • Prasanth Meiyappan
  • Atul K. JainEmail author
Research Article


Earth’s land cover has been extensively transformed over time due to both human activities and natural causes. Previous global studies have focused on developing spatial and temporal patterns of dominant human land-use activities (e.g., cropland, pastureland, urban land, wood harvest). Process-based modeling studies adopt different strategies to estimate the changes in land cover by using these land-use data sets in combination with a potential vegetation map, and subsequently use this information for impact assessments. However, due to unaccounted changes in land cover (resulting from both indirect anthropogenic and natural causes), heterogeneity in land-use/cover (LUC) conversions among grid cells, even for the same land use activity, and uncertainty associated with potential vegetation mapping and historical estimates of human land use result in land cover estimates that are substantially different compared to results acquired from remote sensing observations. Here, we present a method to implicitly account for the differences arising from these uncertainties in order to provide historical estimates of land cover that are consistent with satellite estimates for recent years. Due to uncertainty in historical agricultural land use, we use three widely accepted global estimates of cropland and pastureland in combination with common wood harvest and urban land data sets to generate three distinct estimates of historical land-cover change and underlying LUC conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and the extent to which different ecosystems have undergone changes. The annual land cover maps and LUC conversion maps are reported at 0.5°×0.5° resolution and describe the area of 28 landcover types and respective underlying land-use transitions. The reconstructed data sets are relevant for studies addressing the impact of land-cover change on biogeophysics, biogeochemistry, water cycle, and global climate.


historical land use land-cover change landuse conversions deforestation HYDE Moderate Resolution Imaging Spectroradiometer (MODIS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arora V K, Boer G J (2006). Simulating competition and coexistence between plant functional types in a dynamic vegetation model. Earth Interactions, 10(10): 1–30CrossRefGoogle Scholar
  2. Bala G, Caldeira K, Wickett M, Phillips T J, Lobell D B, Delire C, Mirin A (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA, 104(16): 6550–6555CrossRefGoogle Scholar
  3. Bonan G B (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882): 1444–1449CrossRefGoogle Scholar
  4. Bonan G B, Pollard D, Thompson S L (1992). Effects of boreal forest vegetation on global climate. Nature, 359(6397): 716–718CrossRefGoogle Scholar
  5. Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre M F, Matthews H D, Ramankutty N, Schaeffer M, Sokolov A (2006). Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn, 26(6): 587–600CrossRefGoogle Scholar
  6. Canadell J G (2002). Land use effects on terrestrial carbon sources and sinks. Science in China (Series C), 45(Sl): 1–9Google Scholar
  7. Canadell J G, Le Quéré C, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway T J, Gillett N P, Houghton R A, Marland G (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 104(47): 18866–18870CrossRefGoogle Scholar
  8. Collatz G J, Berry J A, Clark J S (1998). Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia, 114(4): 441–454CrossRefGoogle Scholar
  9. Ellis E C, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr, 19: 589–606Google Scholar
  10. FAO (2001). Global Forest Resources Assessment 2000. Main Report, FAO Forestry Paper 140, Rome, Italy. Available at
  11. FAO (2006). Global Forest Resources Assessment 2005. Main Report, FAO Forestry Paper 147, Rome, Italy. Available at
  12. FAO (2008). FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at:
  13. FAO (2010). Global Forest Resources Assessment 2010, Main Report, FAO Forestry Paper 163, Rome, Italy. Available at
  14. Feddema J J, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A, Washington W M (2005). The importance of land cover change in simulating future climates. Science, 310(5754): 1674–1678CrossRefGoogle Scholar
  15. Findell K L, Pitman A J, England M H, Pegion P J (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. J Clim, 22(12): 3248–3269CrossRefGoogle Scholar
  16. Foley J A, Costa M H, Delire C, Ramankutty N, Snyder P (2003). Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front Ecol Environ, 1(1): 38–44Google Scholar
  17. Foley J A, Defries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K (2005). Global consequences of land use. Science, 309(5734): 570–574CrossRefGoogle Scholar
  18. Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks D P (2011). Solutions for a cultivated planet. Nature, 478(7369): 337–342CrossRefGoogle Scholar
  19. Friedl M A, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010). MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ, 114(1): 168–182CrossRefGoogle Scholar
  20. Giglio L, Randerson J T, van der Werf G R, Kasibhatla P S, Collatz G J, Morton D C, DeFries R S (2010). Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7(3): 1171–1186CrossRefGoogle Scholar
  21. Hansen MC, DeFries R S, Townshend J G R, Sohlberg R (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21(6–7): 1331–1364CrossRefGoogle Scholar
  22. Houghton R A (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B Chem Phys Meterol, 51(2): 298–313CrossRefGoogle Scholar
  23. Houghton R A (2005). Aboveground forest biomass and the global carbon balance. Glob Change Biol, 11(6): 945–958CrossRefGoogle Scholar
  24. Houghton R A (2008). Carbon flux to the atmosphere from land use changes: 1850–2005. In: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USAGoogle Scholar
  25. Houghton R A, Hobbie J E, Melillo J M, Moore B, Peterson B J, Shaver G R, Woodwell G M (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr, 53(3): 235–262CrossRefGoogle Scholar
  26. Houghton R A, van der Werf G R, DeFries R S, Hansen M C, House J I, Le Quéré C, Pongratz J, Ramankutty N (2012). Chapter G2 carbon emissions from land use and land cover change. Biogeosciences Discuss, 9(1): 835–878CrossRefGoogle Scholar
  27. Hurtt G C, Chini L P, Frolking S, Betts R A, Feddema J, Fischer G, Fisk J P, Hibbard K, Houghton R, Janetos A, Jones C D, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thorton P, Vuuren D P, Wang Y (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change, 109(1–2): 117–161CrossRefGoogle Scholar
  28. Hurtt G C, Frolking S, Fearon M G, Moore B III, Shevliakova E, Malyshev S, Pacala S W, Houghton R A (2006). The underpinnings of land use history: three centuries of global gridded land use transitions, wood harvest activity, and resulting secondary lands. Glob Change Biol, 12(7): 1208–1229CrossRefGoogle Scholar
  29. Jain A K, Yang X (2005). Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change. Global Biogeochem Cycles, 19(2): GB2015CrossRefGoogle Scholar
  30. Jain A K, Yang X, Kheshgi H, McGuire A D, Post W P, Kicklighter D (2009). Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochem Cycles, 23(4): GB4028CrossRefGoogle Scholar
  31. Jung M, Henkel K, Herold M, Churkina G (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ, 101(4): 534–553CrossRefGoogle Scholar
  32. Klein Goldewijk K (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles, 15(2): 417–433CrossRefGoogle Scholar
  33. Klein Goldewijk K, Beusen A, van Drecht G, De Vos M (2011). The HYDE 3.1 spatially explicit database of human-induced land-use change over the past 12,000 years. Glob Ecol Biogeogr, 20(1): 73–86CrossRefGoogle Scholar
  34. Klein Goldewijk K, Beusen A, Janssen P (2010). Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. Holocene, 20(4): 565–573CrossRefGoogle Scholar
  35. Klein Goldewijk K, Ramankutty N (2004). Land cover change over the last three centuries due to human activities: the availability of new global data sets. GeoJournal, 61(4): 335–344CrossRefGoogle Scholar
  36. Klein Goldewijk K, van Drecht G, Bouwman A F (2007). Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. Journal of Land Use Science, 2(3): 167–190CrossRefGoogle Scholar
  37. Lambin E F, Geist H J (2003). Regional differences in tropical deforestation. Environment, 45(6): 22–36Google Scholar
  38. Lambin E F, Geist H J, Lepers E (2003). Dynamics of land use and land cover change in tropical regions. Annu Rev Environ Resour, 28(1): 205–241CrossRefGoogle Scholar
  39. Lawrence P J, Feddema J J, Bonan G B, Meehl G A, O’Neill B C, Oleson K W, Levis S, Lawrence D M, Kluzek E, Lindsay K, Thornton P E (2012). Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J Clim: 120208141321006Google Scholar
  40. Leite C C, Costa M H, de Lima C A, Ribeiro C A A S, Sediyama G C (2011). Historical reconstruction of land use in the Brazilian Amazon (1940–1995). Journal of Land Use Science, 6(1): 33–52CrossRefGoogle Scholar
  41. Li B B, Fang X Q, Ye Y, Zhang X (2010). Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data-a case study in Northeast China. Science in China (D): Earth Sciences, 53(11): 1689–1699CrossRefGoogle Scholar
  42. Liu M, Tian H (2010). China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Global Biogeochem Cycles, 24(3): GB3003CrossRefGoogle Scholar
  43. Loveland T R, Belward A S (1997). The IGBP-DIS global 1 km land cover data set, DISCover first results. Int J Remote Sens, 18(15): 3289–3295CrossRefGoogle Scholar
  44. McGuire A D, Sitch S, Clein J S, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier R A, Melillo J M, Moore B III, Prentice I C, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams L J, Wittenberg U (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cycles, 15(1): 183–206CrossRefGoogle Scholar
  45. Meinshausen M, Smith S J, Calvin K V, Daniel J S, Kainuma M L T, Lamarque J F, Matsumoto K, Montzka S A, Raper S C B, Riahi K, Thomson A, Velders G J M, Vuuren D P P (2011). The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change, 109(1–2): 213–241CrossRefGoogle Scholar
  46. Mitchell T D, Jones P D (2005). An improved method of constructing a database of monthly climate observations and associated highresolution grids. Int J Climatol, 25(6): 693–712CrossRefGoogle Scholar
  47. Monfreda C, Ramankutty N, Foley J A (2008). Farming the Planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary prodution in the year 2000. Global Biogeochem Cycles, 22: GB1022CrossRefGoogle Scholar
  48. Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, van Vuuren D P, Carter T R, Emori S, Kainuma M, Kram T, Meehl G A, Mitchell J F B, Nakicenovic N, Riahi K, Smith S J, Stouffer R J, Thomson A M, Weyant J P, Wilbanks T J (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756CrossRefGoogle Scholar
  49. Olofsson J, Hickler T (2008). Effects of human land use on the global carbon cycle during the last 6000 years. Vegetation History and Archaeobotany, 17(5): 605–615CrossRefGoogle Scholar
  50. Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 211–272Google Scholar
  51. Pielke R A, Marland G, Betts R A, Chase T N, Eastman J L, Niles J O, Niyogi D D S, Running SW (2002). The influence of land use change and landscape dynamics on the climate system: relevance to climatechange policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond A, 360(1797): 1705–1719CrossRefGoogle Scholar
  52. Pielke R A Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Klein Goldewijk K, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011). Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Clim Change, 2(6): 828–850CrossRefGoogle Scholar
  53. Pitman A J, Avila F B, Abramowitz G, Wang Y P, Phipps S J, de Noblet-Ducoudré N (2011). Importance of background climate in determining impact of land cover change on regional climate. Nature Climate Change, 1(9): 472–475CrossRefGoogle Scholar
  54. Pitman A J, de Noblet-Ducoudré N, Cruz F T, Davin E, Bonan G B, Brovkin V, Claussen M, Delire C, Gayler V, van den Hurk B J J M, Lawrence P J, van der Molen M K, Müller C, Reick C H, Seneviratne S I, Strengers B J, Voldoire A (2009). Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophysical Research Letters, 36; L14814Google Scholar
  55. Pongratz J, Reick C, Raddatz T, Claussen M (2008). A reconstruction of global agricultural areas and land cover for the Last Millennium. Global Biogeochem Cycles, 22(3): GB3018CrossRefGoogle Scholar
  56. Pongratz J, Reick C H, Raddatz T, Claussen M (2009). Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem Cycles, 23(4): GB4001CrossRefGoogle Scholar
  57. Ramankutty N, Evan A, Monfreda C, Foley J A (2008). Farming the Planet: 1. The geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles, 22(1): GB1003CrossRefGoogle Scholar
  58. Ramankutty N, Foley J (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles, 13(4): 997–1028CrossRefGoogle Scholar
  59. Reick C, Raddatz T, Pongratz J, Claussen M (2010). Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2. Tellus B Chem Phys Meterol, 62(5): 329–336CrossRefGoogle Scholar
  60. Shevliakova E, Pacala S W, Malyshev S, Hurtt G C, Milly P C D, Caspersen J P, Sentman L T, Fisk J P, Wirth C, Crevoisier C (2009). Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Global Biogeochem Cycles, 23(2): GB2022CrossRefGoogle Scholar
  61. Still C J, Berry J A, Collatz G J, DeFries R S (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles, 17(1): 1006–1020CrossRefGoogle Scholar
  62. van der Werf G R, Randerson J T, Giglio L, Collatz G J, Mu M, Kasibhatla P S, Morton D C, DeFries R S, Jin Y, van Leeuwen T T (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys, 10(23): 11707–11735CrossRefGoogle Scholar
  63. Yang X, Richardson T K, Jain A K (2010). Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake. Biogeosciences Discuss, 7(2): 2739–2765CrossRefGoogle Scholar
  64. Yang X, Wittig V, Jain A K, Post W (2009). Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change. Global Biogeochem Cycles, 23(4): GB4029CrossRefGoogle Scholar
  65. Ye Y, Fang X Q (2011). Spatial pattern of land cover changes across Northeast China over the past 300 years. J Hist Geogr, 37(4): 408–417CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations