Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons

  • Chengzhi Yang
  • Shikun Chen
  • Huilan SuEmail author
  • Haoyue Zhang
  • Jianfei Tang
  • Cuiping Guo
  • Fang Song
  • Wang Zhang
  • Jiajun Gu
  • Qinglei Liu
Research Article


Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4- ions by the chelation of -C = O, reducing agent for Au(0) by the reduction of -OH, and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7–10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.


Au NPs biocompatibility small size dispersivity silk fibroin fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by the National Key Research and Development Program of China (Grant No. 2017YFB1201005), the National Natural Science Foundation of China (Grant Nos. 51572169 and 51672175), and the Shanghai Science and Technology Committee (Grant Nos. 17ZR1441400 and 18JC1410500).


  1. [1]
    Hayashi K, Nakamura M, Miki H, et al. Gold nanoparticle clusterplasmon-enhanced fluorescent silica core–shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chemical Communications, 2013, 49(46): 5334–5336CrossRefGoogle Scholar
  2. [2]
    Lin W, Yang C, Xue Z, et al. Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography. Journal of Colloid and Interface Science, 2018, 528: 135–144CrossRefGoogle Scholar
  3. [3]
    Ghosh P S, Kim C K, Han G, et al. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2008, 2(11): 2213–2218CrossRefGoogle Scholar
  4. [4]
    Zhan F, Wang T, Iradukunda L, et al. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Analytica Chimica Acta, 2018, 1036(7): 153–161CrossRefGoogle Scholar
  5. [5]
    Zhang H, Zhang Y, Jin R, et al. Preparation and photothermal therapy of hyaluronic acid-conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. Journal of Materials Science, 2018, 53(24): 16252–16262CrossRefGoogle Scholar
  6. [6]
    Han L, Zhang Y, Zhang Y, et al. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017, 171(15): 32–38CrossRefGoogle Scholar
  7. [7]
    Bodelón G, Costas C, Pérez-Juste J, et al. Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13: 40–60CrossRefGoogle Scholar
  8. [8]
    Hong X, Tan C, Chen J, et al. Synthesis, properties and applications of one-and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55CrossRefGoogle Scholar
  9. [9]
    Kneipp J, Kneipp H, McLaughlin M, et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters, 2006, 6(10): 2225–2231CrossRefGoogle Scholar
  10. [10]
    Zhang J, Gao Y, Alvarez-Puebla R A, et al. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Advanced Materials, 2006, 18(24): 3233–3237CrossRefGoogle Scholar
  11. [11]
    Hurh J, Markus J, Kim Y J, et al. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies. Journal of Nanoparticle Research, 2017, 19(9): 313 (13 pages)CrossRefGoogle Scholar
  12. [12]
    Park J E, Kim M, Hwang J H, et al. Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods, 2017, 1(3): 1600032 (6 pages)CrossRefGoogle Scholar
  13. [13]
    Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23): 10644–10654CrossRefGoogle Scholar
  14. [14]
    Xu C, Tung G A, Sun S. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 2008, 20(13): 4167–4169CrossRefGoogle Scholar
  15. [15]
    Wang P, Wang X, Wang L, et al. Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16(3): 034610CrossRefGoogle Scholar
  16. [16]
    Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994, (7): 801–802Google Scholar
  17. [17]
    Chauhan A, Zubair S, Tufail S, et al. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 2011, 6: 2305–2319Google Scholar
  18. [18]
    Chandran P R, Naseer M, Udupa N, et al. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology, 2012, 23(1): 015602CrossRefGoogle Scholar
  19. [19]
    Vepari C, Kaplan D L. Silk as a biomaterial. Progress in Polymer Science, 2007, 32(8–9): 991–1007CrossRefGoogle Scholar
  20. [20]
    Rnjak-Kovacina J, DesRochers T M, Burke K A, et al. The effect of sterilization on silk fibroin biomaterial properties. Macromolecular Bioscience, 2015, 15(6): 861–874CrossRefGoogle Scholar
  21. [21]
    Koh L D, Cheng Y, Teng C P, et al. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015, 46: 86–110CrossRefGoogle Scholar
  22. [22]
    Shen Y, Johnson M A, Martin D C. Microstructural characterization of Bombyx mori silk fibers. Macromolecules, 1998, 31(25): 8857–8864CrossRefGoogle Scholar
  23. [23]
    Mhuka V, Dube S, Nindi M M. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. International Journal of Biological Macromolecules, 2013, 52: 305–311CrossRefGoogle Scholar
  24. [24]
    Jin Y, Zhang Y, Hang Y, et al. A simple process for dry spinning of regenerated silk fibroin aqueous solution. Journal of Materials Research, 2013, 28(20): 2897–2902CrossRefGoogle Scholar
  25. [25]
    Dong Q, Su H, Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. The Journal of Physical Chemistry B, 2005, 109(37): 17429–17434CrossRefGoogle Scholar
  26. [26]
    Li Z, Yang Y, Yao J, et al. A facile fabrication of silk/MoS2 hybrids for photothermal therapy. Materials Science and Engineering C, 2017, 79: 123–129CrossRefGoogle Scholar
  27. [27]
    Johari N, Hosseini H R M, Samadikuchaksaraei A. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering. Materials Science and Engineering C, 2017, 79: 783–792CrossRefGoogle Scholar
  28. [28]
    Wei W, Zhang Y, Shao H, et al. Post-treatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Journal of Materials Research, 2011, 26 (9): 1100–1106Google Scholar
  29. [29]
    Shen T, Wang T, Cheng G, et al. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. International Journal of Biological Macromolecules, 2018, 113: 458–463CrossRefGoogle Scholar
  30. [30]
    Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643–1652CrossRefGoogle Scholar
  31. [31]
    McGrath K, Kaplan D, eds. Protein-based Materials. Boston, USA: Birkhäuser, 1997Google Scholar
  32. [32]
    Riabinina D, Zhang J, Chaker M, et al. Control of plasmon resonance of gold nanoparticles via excimer laser irradiation. Applied Physics A: Materials Science & Processing, 2011, 102(1): 153–160CrossRefGoogle Scholar
  33. [33]
    Liu S, Chen G, Prasad P N, et al. Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chemistry of Materials, 2011, 23 (18): 4098–4101CrossRefGoogle Scholar
  34. [34]
    Yu H, Chen M, Rice P M, et al. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Letters, 2005, 5(2): 379–382CrossRefGoogle Scholar
  35. [35]
    Zhu H, Du M, Zou M, et al. Facile and green synthesis of welldispersed Au nanoparticles in PAN nanofibers by tea polyphenols. Journal of Materials Chemistry, 2012, 22(18): 9301–9307CrossRefGoogle Scholar
  36. [36]
    Dykman L A, Khlebtsov N G. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282CrossRefGoogle Scholar
  37. [37]
    Wilcoxon J P, Martin J E, Parsapour F, et al. Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics, 1998, 108(21): 9137–9143CrossRefGoogle Scholar
  38. [38]
    Zhou C, Yu J, Qin Y, et al. Grain size effects in polycrystalline gold nanoparticles. Nanoscale, 2012, 4(14): 4228–4233CrossRefGoogle Scholar
  39. [39]
    Zhang X. Gold nanoparticles: Recent advances in the biomedical applications. Cell Biochemistry and Biophysics, 2015, 72(3): 771–775CrossRefGoogle Scholar
  40. [40]
    Zhou C, Long M, Qin Y P, et al. Luminescent gold nanoparticles with efficient renal clearance. Angewandte Chemie-International Edition, 2011, 50(14): 3168–3172CrossRefGoogle Scholar
  41. [41]
    Wei J, Zhu Y, Peng T, et al. Analyses on FT-IR and Raman spectra of sericin fixed silk fibres. Textile Auxiliaries, 2004, 21(3): 51–53 (in Chinese)Google Scholar
  42. [42]
    Su H, Han J, Dong Q, et al. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers. Applied Physics A: Materials Science & Processing, 2011, 102(2): 429–434CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chengzhi Yang
    • 1
  • Shikun Chen
    • 1
  • Huilan Su
    • 1
    Email author
  • Haoyue Zhang
    • 1
  • Jianfei Tang
    • 1
  • Cuiping Guo
    • 1
  • Fang Song
    • 1
  • Wang Zhang
    • 1
  • Jiajun Gu
    • 1
  • Qinglei Liu
    • 1
  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations