Advertisement

Frontiers of Materials Science

, Volume 12, Issue 3, pp 225–238 | Cite as

All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells

  • Zhenrong Jia
  • Xuefeng Xia
  • Xiaofeng Wang
  • Tengyi Wang
  • Guiying Xu
  • Bei Liu
  • Jitong Zhou
  • Fan Li
Research Article
  • 31 Downloads

Abstract

Herein, the ability to optimize the morphology and photovoltaic performance of poly(3-hexylthiophene) (P3HT)/ZnO hybrid bulk-heterojunction solar cells via introducing all-conjugated amphiphilic P3HT-based block copolymer (BCP), poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT-b-P3TEGT), as polymeric additives is demonstrated. The results show that the addition of P3HT-b-P3TEGT additives can effectively improve the compatibility between P3HT and ZnO nanocrystals, increase the crystalline and ordered packing of P3HT chains, and form optimized hybrid nanomorphology with stable and intimate hybrid interface. The improvement is ascribed to the P3HT-b-P3TEGT at the P3HT/ZnO interface that has strong coordination interactions between the TEG side chains and the polar surface of ZnO nanoparticles. All of these are favor of the efficient exciton dissociation, charge separation and transport, thereby, contributing to the improvement of the efficiency and thermal stability of solar cells. These observations indicate that introducing all-conjugated amphiphilic BCP additives can be a promising and effective protocol for high-performance hybrid solar cells.

Keywords

hybrid solar cell P3HT ZnO all-conjugated amphiphilic block copolymer additive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61464006 and 61664006) and the Natural Science Foundation of Jiangxi Province, China (20171ACB21010). F.L. acknowledges the support from the Jiangxi Province Young Scientist Project (20142BCB23002).

Supplementary material

11706_2018_428_MOESM1_ESM.pdf (308 kb)
Supplementary information

References

  1. [1]
    Huynh WU, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425–2427CrossRefGoogle Scholar
  2. [2]
    Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013, 6(7): 2020–2040CrossRefGoogle Scholar
  3. [3]
    Sun Y, Liu Z, Yuan J, et al. Polymer selection toward efficient polymer/PbSe planar heterojunction hybrid solar cells. Organic Electronics, 2015, 24: 263–271CrossRefGoogle Scholar
  4. [4]
    Yue W, Wei F, Li Y, et al. Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Materials Science in Semiconductor Processing, 2018, 76: 14–24CrossRefGoogle Scholar
  5. [5]
    Giansante C, Mastria R, Lerario G, et al. Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Advanced Functional Materials, 2015, 25(1): 111–119CrossRefGoogle Scholar
  6. [6]
    Li F, Shi Y, Yuan K, et al. Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37(1): 195–203CrossRefGoogle Scholar
  7. [7]
    Liu Z, Sun Y, Yuan J, et al. High-efficiency hybrid solar cells based on polymer/PbSxSe1–x nanocrystals benefiting from vertical phase segregation. Advanced Materials, 2013, 25(40): 5772–5778CrossRefGoogle Scholar
  8. [8]
    Chen Z, Zhang H, Du X, et al. From planar-herterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy & Environmental Science, 2013, 6(5): 1597–1603CrossRefGoogle Scholar
  9. [9]
    Im S H, Lim C S, Chang J A, et al. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Letters, 2011, 11(11): 4789–4793CrossRefGoogle Scholar
  10. [10]
    Chang J A, Im S H, Lee Y H, et al. Panchromatic photonharvesting by hole-conducting materials in inorganic–organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Letters, 2012, 12(4): 1863–1867CrossRefGoogle Scholar
  11. [11]
    Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403–408CrossRefGoogle Scholar
  12. [12]
    Chen Y, Ye P, Zhu Z G, et al. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Advanced Materials, 2017, 29(6): 1603154CrossRefGoogle Scholar
  13. [13]
    Zhao W, Li S, Yao H, et al. Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151CrossRefGoogle Scholar
  14. [14]
    Giansante C, Infante I, Fabiano E, et al. “Darker-than-black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. Journal of the American Chemical Society, 2015, 137(5): 1875–1886CrossRefGoogle Scholar
  15. [15]
    Zhao L, Pang X, Adhikary R, et al. Semiconductor anisotropic nanocomposites obtained by directly coupling conjugated polymers with quantum rods. Angewandte Chemie International Edition, 2011, 50(17): 3958–3962CrossRefGoogle Scholar
  16. [16]
    Jaimes W, Alvarado-Tenorio G, Martínez-Alonso C, et al. Effect of CdS nanoparticle content on the in-situ polymerization of 3-hexylthiophene-2,5-diyl and the application of P3HT-CdS products in hybrid solar cells. Materials Science in Semiconductor Processing, 2015, 37: 259–265CrossRefGoogle Scholar
  17. [17]
    Lewis E A, McNaughter P D, Yin Z, et al. In situ synthesis of PbS nanocrystals in polymer thin films from lead(II) xanthate and dithiocarbamate complexes: evidence for size and morphology control. Chemistry of Materials, 2015, 27(6): 2127–2136CrossRefGoogle Scholar
  18. [18]
    MacLachlan A J, Rath T, Cappel U B, et al. Polymer/nanocrystal hybrid solar cells: influence of molecular precursor design on film nanomorphology, charge generation and device performance. Advanced Functional Materials, 2015, 25(3): 409–420CrossRefGoogle Scholar
  19. [19]
    Zhao L, Lin Z. Crafting semiconductor organic–inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Advanced Materials, 2012, 24(32): 4353–4368CrossRefGoogle Scholar
  20. [20]
    Sun Y, Pitliya P, Liu C, et al. Block copolymer compatibilized polymer: fullerene blend morphology and properties. Polymer, 2017, 113: 135–146CrossRefGoogle Scholar
  21. [21]
    Mitchell V D, Gann E, Huettner S, et al. Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951CrossRefGoogle Scholar
  22. [22]
    Zhu M, Kim H, Jang Y J, et al. Toward high efficiency organic photovoltaic devices with enhanced thermal stability utilizing P3HT-b-P3PHT block copolymer additives. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4 (47): 18432–18443CrossRefGoogle Scholar
  23. [23]
    Li J H, Li Y, Xu J T, et al. Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells. ACS Applied Materials & Interfaces, 2017, 9 (21): 17942–17948CrossRefGoogle Scholar
  24. [24]
    Yao S, Chen Z, Li F, et al. High-efficiency aqueous-solutionprocessed hybrid solar cells based on P3HT dots and CdTe nanocrystals. ACS Applied Materials & Interfaces, 2015, 7(13): 7146–7152CrossRefGoogle Scholar
  25. [25]
    Shi Y, Li F, Chen Y. Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37(1): 236–244CrossRefGoogle Scholar
  26. [26]
    Lee E, Hammer B, Kim J K, et al. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. Journal of the American Chemical Society, 2011, 133(27): 10390–10393CrossRefGoogle Scholar
  27. [27]
    Song I Y, Kim J, Im M J, et al. Synthesis and self-assembly of thiophene-based all-conjugated amphiphilic diblock copolymers with a narrow molecular weight distribution. Macromolecules, 2012, 45(12): 5058–5068CrossRefGoogle Scholar
  28. [28]
    Yamamoto T, Komarudin D, Arai M, et al. Extensive studies on π-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. Journal of the American Chemical Society, 1998, 120(9): 2047–2058CrossRefGoogle Scholar
  29. [29]
    Mena-Osteritz E, Meyer A, Langeveld-Voss B M W, et al. Twodimensional crystals of poly(3-alkyl-thiophene)s: direct visualization of polymer folds in submolecular resolution. Angewandte Chemie International Edition, 2000, 112(15): 2791–2796CrossRefGoogle Scholar
  30. [30]
    Beek W J E, Wienk M M, Kemerink M, et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B, 2005, 109(19): 9505–9516CrossRefGoogle Scholar
  31. [31]
    Jia Z, Wei Y, Wang X, et al. Improvement of morphology and performance of P3HT/ZnO hybrid solar cells induced by liquid crystal molecules. Chemical Physics Letters, 2016, 661: 119–124CrossRefGoogle Scholar
  32. [32]
    Prosa T J, Winokur M J, Moulton J, et al. X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules, 1992, 25(17): 4364–4372CrossRefGoogle Scholar
  33. [33]
    Hu Z, Tang S, Ahlvers A, et al. Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/ fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101(5): 053308CrossRefGoogle Scholar
  34. [34]
    Salim T, Lee H W, Wong L H, et al. Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer–fullerene solar cells. Advanced Functional Materials, 2016, 26(1): 51–65CrossRefGoogle Scholar
  35. [35]
    Zhang L Y, Yin L W, Wang C X, et al. Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. The Journal of Physical Chemistry C, 2010, 114 (21): 9651–9658CrossRefGoogle Scholar
  36. [36]
    Lai C H, Lee W F, Wu I C, et al. Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxylthiophene template. Journal of Materials Chemistry, 2009, 19(39): 7284–7289CrossRefGoogle Scholar
  37. [37]
    Chien S C, Chen F C, Chung M K, et al. Self-assembled poly (ethylene glycol) buffer layers in polymer solar cells: toward superior stability and efficiency. The Journal of Physical Chemistry C, 2012, 116(1): 1354–1360CrossRefGoogle Scholar
  38. [38]
    Zhang S M, Guo Y L, Fan H J, et al. Low bandgap π-conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure–property relationship study. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(20): 5498–5508CrossRefGoogle Scholar
  39. [39]
    Zhang Z G, Liu Y L, Yang Y, et al. Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups synthesis and photovoltaic application. Macromolecules, 2010, 43(22): 9376–9383CrossRefGoogle Scholar
  40. [40]
    Meng L, Shang Y, Li Q, et al. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. The Journal of Physical Chemistry B, 2010, 114(1): 36–41CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhenrong Jia
    • 1
    • 2
  • Xuefeng Xia
    • 1
  • Xiaofeng Wang
    • 1
  • Tengyi Wang
    • 1
  • Guiying Xu
    • 1
  • Bei Liu
    • 1
  • Jitong Zhou
    • 1
  • Fan Li
    • 1
  1. 1.Department of Materials Science and EngineeringNanchang UniversityNanchangChina
  2. 2.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations