Advertisement

Frontiers of Materials Science

, Volume 12, Issue 3, pp 239–246 | Cite as

Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction

  • Infant Raj
  • Yongli Duan
  • Daniel Kigen
  • Wang Yang
  • Liqiang Hou
  • Fan Yang
  • Yongfeng Li
Research Article
  • 9 Downloads

Abstract

Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.

Keywords

hydrogen evolution reaction TaS2 nanosheets arc disharge active edge sites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21576289 and 21322609), the Science Foundation Research Funds Provided to New Recruitments of China University of Petroleum, Beijing (2462014QZDX01) and the Thousand Talents Program.

Supplementary material

11706_2018_425_MOESM1_ESM.pdf (117 kb)
Supplementary information

References

  1. [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRefGoogle Scholar
  2. [2]
    Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924CrossRefGoogle Scholar
  3. [3]
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581CrossRefGoogle Scholar
  4. [4]
    Meric I, Han M Y, Young A F, et al. Current saturation in zerobandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659CrossRefGoogle Scholar
  5. [5]
    Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469CrossRefGoogle Scholar
  6. [6]
    Zeng Z Y, Tan C L, Huang X, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803CrossRefGoogle Scholar
  7. [7]
    Wu J J, Liu MJ, Chatterjee K, et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669CrossRefGoogle Scholar
  8. [8]
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150CrossRefGoogle Scholar
  9. [9]
    Raj S I, Xu X W, Yang W, et al. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620CrossRefGoogle Scholar
  10. [10]
    Liu C, Kong D, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104CrossRefGoogle Scholar
  11. [11]
    Tan C, Zeng Z, Huang X, et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845CrossRefGoogle Scholar
  12. [12]
    Zhang X, Lai Z, Liu Z, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428CrossRefGoogle Scholar
  13. [13]
    Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325CrossRefGoogle Scholar
  14. [14]
    Muratore C, Hu J J, Wang B, et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604CrossRefGoogle Scholar
  15. [15]
    Etzkorn J, Therese H A, Rocker F, et al. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375CrossRefGoogle Scholar
  16. [16]
    Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842CrossRefGoogle Scholar
  17. [17]
    Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97CrossRefGoogle Scholar
  18. [18]
    Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
  19. [19]
    Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276CrossRefGoogle Scholar
  20. [20]
    Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109CrossRefGoogle Scholar
  21. [21]
    Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148CrossRefGoogle Scholar
  22. [22]
    Sun G, Liu J, Zhang X, et al. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580Google Scholar
  23. [23]
    Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010CrossRefGoogle Scholar
  24. [24]
    Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292CrossRefGoogle Scholar
  25. [25]
    Ubaldini A, Jacimovic J, Ubrig N, et al. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459CrossRefGoogle Scholar
  26. [26]
    Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
  27. [S1]
    Wu X, Tao Y, Hu Y, et al. Tantalum disulfide nanobelts: preparation, superconductivity and field emission. Nanotechnology, 2005, 17(1): 201–205CrossRefGoogle Scholar
  28. [S2]
    Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292CrossRefGoogle Scholar
  29. [S3]
    Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010CrossRefGoogle Scholar
  30. [S4]
    Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
  31. [S5]
    Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109CrossRefGoogle Scholar
  32. [S6]
    Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes: growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97CrossRefGoogle Scholar
  33. [S7]
    Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276CrossRefGoogle Scholar
  34. [S8]
    Li H, Tan Y, Liu P, et al. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Advanced Materials, 2016, 28(40): 8945–8949CrossRefGoogle Scholar
  35. [S9]
    Nguyen T P, Choi S, Jeon J M, et al. Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2016, 120(7): 3929–3935CrossRefGoogle Scholar
  36. [S10]
    Feng Y, Gong S, Du E, et al. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2018, 122(4): 2382–2390CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Infant Raj
    • 1
  • Yongli Duan
    • 1
  • Daniel Kigen
    • 1
  • Wang Yang
    • 1
  • Liqiang Hou
    • 1
  • Fan Yang
    • 1
  • Yongfeng Li
    • 1
  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina

Personalised recommendations