Advertisement

Frontiers of Materials Science

, Volume 10, Issue 1, pp 1–7 | Cite as

Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films

  • Abhijeet Ojha
  • Manish Thakker
  • Dinesh O. Shah
  • Prachi TharejaEmail author
Research Article

Abstract

Superhydrophilic thin films of 21 nm sized non-spherical titania nanoparticles are fabricated from a colloidal suspension by fixed blade flow coating without UV illumination. At a blade angle of a = 36° and a gap of d = 300 µm, hierarchically structured films with increasing surface roughness along with microscopic voids are formed depending on the substrate velocity and the titania volume fraction. Increasing the roughness is shown to be concomitant to an increase in the hydrophilicity, eventually leading to superhydrophilicity or water contact angle less than 5°.

Keywords

superhydrophilicity titania flow coating thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96CrossRefGoogle Scholar
  2. [2]
    Minabe T, Tryk D A, Sawunyama P, et al. TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137(1): 53–62CrossRefGoogle Scholar
  3. [3]
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38CrossRefGoogle Scholar
  4. [4]
    Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997, 388(6641): 431–432CrossRefGoogle Scholar
  5. [5]
    Watanabe T, Nakajima A, Wang R, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351(1–2): 260–263CrossRefGoogle Scholar
  6. [6]
    Wang L Q, Baer D R, Engelhard M H, et al. The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 1995, 344(3): 237–250CrossRefGoogle Scholar
  7. [7]
    Wang R, Sakai N, Fujishima A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces. The Journal of Physical Chemistry B, 1999, 103(12): 2188–2194CrossRefGoogle Scholar
  8. [8]
    Nakajima A, Koizumi S, Watanabe T, et al. Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir, 2000, 16(17): 7048–7050CrossRefGoogle Scholar
  9. [9]
    Sawunyama P, Jiang L, Fujishima A, et al. Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. The Journal of Physical Chemistry B, 1997, 101(51): 11000–11003CrossRefGoogle Scholar
  10. [10]
    Miyauchi M, Kieda N, Hishita S, et al. Reversible wettability control of TiO2 surface by light irradiation. Surface Science, 2002, 511(1–3): 401–407CrossRefGoogle Scholar
  11. [11]
    Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie International Edition, 2005, 44(32): 5115–5118CrossRefGoogle Scholar
  12. [12]
    Wenzel R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994CrossRefGoogle Scholar
  13. [13]
    Cassie A, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 546–551CrossRefGoogle Scholar
  14. [14]
    Bico J, Thiele U, Quere D. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1–3): 41–46CrossRefGoogle Scholar
  15. [15]
    Bico J, Tordeux C, Quere D. Rough wetting. EPL (Europhysics Letters), 2001, 55(2): 214–220CrossRefGoogle Scholar
  16. [16]
    Zorba V, Chen X, Mao S S. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters, 2010, 96(9): 093702 (3 pages)CrossRefGoogle Scholar
  17. [17]
    Lee D, Rubner M F, Cohen R E. All-nanoparticle thin-film coatings. Nano Letters, 2006, 6(10): 2305–2312CrossRefGoogle Scholar
  18. [18]
    Yu J, Zhao X, Zhao Q, et al. Preparation and characterization of super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics, 2001, 68(1–3): 253–259CrossRefGoogle Scholar
  19. [19]
    Han J B, Wang X, Wang N, et al. Effect of plasma treatment on hydrophilic properties of TiO2 thin films. Surface and Coatings Technology, 2006, 200(16–17): 4876–4878CrossRefGoogle Scholar
  20. [20]
    Sirghi L, Nakamura M, Hatanaka Y, et al. Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir, 2001, 17(26): 8199–8203CrossRefGoogle Scholar
  21. [21]
    Weinstein S J, Ruschak K J. Coating flows. Annual Review of Fluid Mechanics, 2004, 36(1): 29–53CrossRefGoogle Scholar
  22. [22]
    Mittal M, Niles R K, Furst E M. Flow-directed assembly of nanostructured thin films from suspensions of anisotropic titania particles. Nanoscale, 2010, 2(10): 2237–2243CrossRefGoogle Scholar
  23. [23]
    Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1–21CrossRefGoogle Scholar
  24. [24]
    Shirtcliffe N J, McHale G, Newton M I, et al. Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, (25): 3135–3137CrossRefGoogle Scholar
  25. [25]
    Irie H, Ping T S, Shibata T, et al. Reversible control of wettability of a TiO2 surface by introducing surface roughness. Electrochemical and Solid-State Letters, 2005, 8(9): D23–D25CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abhijeet Ojha
    • 1
  • Manish Thakker
    • 2
    • 3
  • Dinesh O. Shah
    • 3
    • 4
  • Prachi Thareja
    • 5
    Email author
  1. 1.Department of Biological EngineeringIndian Institute of TechnologyGandhinagar, AhmedabadIndia
  2. 2.Department of Instrumentation and Control EngineeringDharmsinh Desai UniversityNadiadIndia
  3. 3.Shah-Schulman Center for Surface Science and NanotechnologyDharmsinh Desai UniversityNadiadIndia
  4. 4.Department of Chemical Engineering and Department of AnesthesiologyUniversity of FloridaGainesvilleUSA
  5. 5.Department of Chemical EngineeringIndian Institute of TechnologyGandhinagar, AhmedabadIndia

Personalised recommendations