Frontiers of Materials Science

, Volume 9, Issue 2, pp 170–177 | Cite as

The beginnings of plasmomechanics: towards plasmonic strain sensors

  • Thomas Maurer
  • Joseph Marae-Djouda
  • Ugo Cataldi
  • Arthur Gontier
  • Guillaume Montay
  • Yazid Madi
  • Benoît Panicaud
  • Demetrio Macias
  • Pierre-Michel Adam
  • Gaëtan Lévêque
  • Thomas Bürgi
  • Roberto Caputo
Research Article

Abstract

This article exposes the beginnings of a new field which could be named as “plasmomechanics”. Plasmomechanics comes from the convergence between mechanics and plasmonics. Here we discuss a relatively recent topic whose technological aim is the development of plasmonic strain sensors. The idea is based on the ability to deduce Au nanoparticles (NPs) distance distributions from polarized optical extinction spectroscopy which could thus give access to material strains. Variations of interparticle distances distributions can indeed lead to variations of plasmonic coupling and thus to material color change as shown here experimentally and numerically for random Au NP assemblies deposited onto elastomer films.

Keywords

localized surface plasmon resonance (LSPR) metallic nanoparticle strain composite material elastomeric film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society, 2002, 124(35): 10596–10604CrossRefGoogle Scholar
  2. [2]
    Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1999, 54(1–2): 3–15CrossRefGoogle Scholar
  3. [3]
    Liao H, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 2006, 1(2): 201–208CrossRefGoogle Scholar
  4. [4]
    Haes A J, Chang L, Klein W L, et al. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 2005, 127(7): 2264–2271CrossRefGoogle Scholar
  5. [5]
    Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346CrossRefGoogle Scholar
  6. [6]
    Haruta M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 2004, 37(1–2): 27–36CrossRefGoogle Scholar
  7. [7]
    Sazonova V, Yaish Y, Ustünel H, et al. A tunable carbon nanotube electromechanical oscillator. Nature, 2004, 431(7006): 284–287CrossRefGoogle Scholar
  8. [8]
    van der Zande A M, Barton R A, Alden J S, et al. Large-scale arrays of single-layer graphene resonators. Nano Letters, 2010, 10(12): 4869–4873CrossRefGoogle Scholar
  9. [9]
    Gloppe A, Verlot P, Dupont-Ferrier E, et al. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nature Nanotechnology, 2014, 9(11): 920–926CrossRefGoogle Scholar
  10. [10]
    Clair A, Foucault M, Calonne O, et al. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Materialia, 2011, 59(8): 3116–3123CrossRefGoogle Scholar
  11. [11]
    Marae-Djouda J, et al. Nanogauges gratings for strain mapping at the nanoscale. (submitted)Google Scholar
  12. [12]
    Correa-Duarte M A, Salgueiriño-Maceira V, Rinaldi A, et al. Optical strain detectors based on gold/elastomer nanoparticulated films. Gold Bulletin, 2007, 40(1): 6–14CrossRefGoogle Scholar
  13. [13]
    Jain P K, Huang W, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Letters, 2007, 7(7): 2080–2088CrossRefGoogle Scholar
  14. [14]
    Tabor C, Murali R, Mahmoud M, et al. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. The Journal of Physical Chemistry A, 2009, 113(10): 1946–1953CrossRefGoogle Scholar
  15. [15]
    Maurer T, et al. Strategies for self-organization of Au nanoparticles assisted by copolymer templates. In: Plasmonics: Metallic Nanostructures and Their Optical Properties XI. Proceedings of the SPIE Society, San Diego, 2013Google Scholar
  16. [16]
    Lamarre S S, Sarrazin A, Proust J, et al. Optical properties of Au colloids self-organized into rings via copolymer templates. Journal of Nanoparticle Research, 2013, 15(5): 1656CrossRefGoogle Scholar
  17. [17]
    Sarrazin A, Gontier A, Plaud A, et al. Single step synthesis and organization of gold colloids assisted by copolymer templates. Nanotechnology, 2014, 25(22): 225603CrossRefGoogle Scholar
  18. [18]
    Jiang C, Markutsya S, Tsukruk V V. Collective and individual plasmon resonances in nanoparticle films obtained by spinassisted layer-by-layer assembly. Langmuir, 2004, 20(3): 882–890CrossRefGoogle Scholar
  19. [19]
    Cataldi U, Caputo R, Kurylyak Y, et al. Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling. Journal of Materials Chemistry C, 2014, 2(37): 7927–7933CrossRefGoogle Scholar
  20. [20]
    Romero I, Aizpurua J, Bryant G W, et al. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14(21): 9988–9999CrossRefGoogle Scholar
  21. [21]
    Xu Y L. Electromagnetic scattering by an aggregate of spheres: far field. Applied Optics, 1997, 36(36): 9496–9508CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas Maurer
    • 1
  • Joseph Marae-Djouda
    • 1
    • 2
    • 3
  • Ugo Cataldi
    • 6
    • 7
  • Arthur Gontier
    • 1
  • Guillaume Montay
    • 2
  • Yazid Madi
    • 3
    • 4
  • Benoît Panicaud
    • 2
  • Demetrio Macias
    • 1
  • Pierre-Michel Adam
    • 1
  • Gaëtan Lévêque
    • 5
  • Thomas Bürgi
    • 6
  • Roberto Caputo
    • 1
    • 7
  1. 1.Laboratory of Nanotechnology and Instrumentation in Optics (LNIO), ICD CNRS UMR 6281University of Technology of TroyesTroyesFrance
  2. 2.The Laboratory of Mechanical Systems and Concurrent Engineering, ICD CNRS UMR 6281University of Technology of TroyesTroyesFrance
  3. 3.ErmessEPFSceauxFrance
  4. 4.Center of MaterialsMines ParisTech, UMR CNRS 7633Evry CedexFrance
  5. 5.Institute of Electronics, Microelectronics and Nanotechnology (IEMN, CNRS-8520), Cité ScientifiqueVilleneuve d’AscqFrance
  6. 6.Department of Physical ChemistryUniversity of GenevaGeneva 4Switzerland
  7. 7.Department of Physics and CNR-NANOTECUniversity of CalabriaRendeItaly

Personalised recommendations