Advertisement

Frontiers of Materials Science

, Volume 7, Issue 3, pp 248–260 | Cite as

Poriferan chitin as a template for hydrothermal zirconia deposition

  • Marcin Wysokowski
  • Mykhaylo Motylenko
  • Vasilii V. Bazhenov
  • Dawid Stawski
  • Iaroslav Petrenko
  • Andre Ehrlich
  • Thomas Behm
  • Zoran Kljajic
  • Allison L. Stelling
  • Teofil Jesionowski
  • Hermann Ehrlich
Research Article

Abstract

Chitin is a thermostable biopolymer found in various inorganic-organic skeletal structures of numerous invertebrates including sponges (Porifera). The occurrence of chitin within calcium- and silica-based biominerals in organisms living in extreme natural conditions has inspired development of new (extreme biomimetic) synthesis route of chitin-based hybrid materials in vitro. Here, we show for the first time that 3D-α-chitin scaffolds isolated from skeletons of the marine sponge Aplysina aerophoba can be effectively mineralized under hydrothermal conditions (150°C) using ammonium zirconium(IV) carbonate as a precursor of zirconia. Obtained chitin-ZrO2 hybrid materials were characterized by FT-IR, SEM, HRTEM, as well as light and confocal laser microscopy. We suggest that formation of chitin-ZrO2 hybrids occurs due to hydrogen bonds between chitin and ZrO2.

Keywords

chitin biocomposite zirconia hydrothermal synthesis ammonium zirconium carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nicol S, Hosie G W. Chitin production by krill. Biochemical Systematics and Ecology, 1993, 21(2): 181–184CrossRefGoogle Scholar
  2. [2]
    Wang Y, Chang Y, Yu L, et al. Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 2013, 92(1): 90–97CrossRefGoogle Scholar
  3. [3]
    Ehrlich H. Biological Materials of Marine Origin: Invertebrates. Dordrecht, the Netherlands: Springer, 2010CrossRefGoogle Scholar
  4. [4]
    Goodrich J D, Winter W T. α-chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules, 2007, 8(1): 252–257CrossRefGoogle Scholar
  5. [5]
    Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering C, 2010, 30(3): 357–363CrossRefGoogle Scholar
  6. [6]
    Lease H M, Wolf B O. Exoskeletal chitin scales isometrically with body size in terrestrial insects. Journal of Morphology, 2010, 271(6): 759–768Google Scholar
  7. [7]
    Ehrlich H, Ilan M, Maldonado M, et al. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. International Journal of Biological Macromolecules, 2010, 47(2): 132–140CrossRefGoogle Scholar
  8. [8]
    Ehrlich H, Steck E, Ilan M, et al. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International Journal of Biological Macromolecules, 2010, 47(2): 141–145CrossRefGoogle Scholar
  9. [9]
    Ehrlich H, Maldonado M, Spindler K D, et al. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B(4): 347–356CrossRefGoogle Scholar
  10. [10]
    Ehrlich H, Krautter M, Hanke T, et al. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B(4): 473–483CrossRefGoogle Scholar
  11. [11]
    Brunner E, Ehrlich H, Schupp P, et al. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. Journal of Structural Biology, 2009, 168(3): 539–547CrossRefGoogle Scholar
  12. [12]
    Ehrlich H, Simon P, Carrillo-Cabrera W, et al. Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chemistry of Materials, 2010, 22(4): 1462–1471CrossRefGoogle Scholar
  13. [13]
    Ehrlich H, Janussen D, Simon P, et al. Nanostructural organization of naturally occurring composites — part II: silica-chitin-based biocomposites. Journal of Nanomaterials, 2008, 54 (8 pages)Google Scholar
  14. [14]
    Ehrlich H, Kaluzhaya O V, Tsurkan M V, et al. First report on chitinous holdfast in sponges (Porifera). Proceedings of the Royal Society B, 2013, 280: 1762Google Scholar
  15. [15]
    Ehrlich H, Deutzmann R, Brunner E, et al. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2010, 2(12): 1084–1088CrossRefGoogle Scholar
  16. [16]
    Alonso B, Belamie E. Chitin-silica nanocomposites by self-assembly. Angewandte Chemie International Edition, 2010, 49(44): 8201–8204CrossRefGoogle Scholar
  17. [17]
    Belamie E, Boltoeva M Y, Yang K, et al. Tunable hierarchical porosity from self-assembled chitin-silica nano-composites. Journal of Materials Chemistry, 2011, 21(42): 16997–17006CrossRefGoogle Scholar
  18. [18]
    Copello G J, Mebert A M, Raineri M, et al. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method. Journal of Hazardous Materials, 2011, 186(1): 932–939CrossRefGoogle Scholar
  19. [19]
    Wan K, Peng X H, Du P J. Chitin/TiO2 composite for photocatalytic degradation of phenol. Advanced Materials Research, 2010, 132: 105–110CrossRefGoogle Scholar
  20. [20]
    Jayakumar R, Ramachandran R, Divyarani V V, et al. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules, 2011, 48(2): 336–344CrossRefGoogle Scholar
  21. [21]
    Jayakumar R, Ramachandran R, Sudheesh Kumar P T, et al. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. International Journal of Biological Macromolecules, 2011, 49(3): 274–280CrossRefGoogle Scholar
  22. [22]
    Di Giuseppe A, Crusianelli M, Passacantado M, et al. Chitin- and chitosan-anchored methyltrioxorhenium: An innovative approach for selective heterogenous catalytic epoxidations of olefins. Journal of Catalysis, 2010, 276(2): 412–422CrossRefGoogle Scholar
  23. [23]
    Madhumathi K, Sudheesh Kumar P T, Kavya K C, et al. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. International Journal of Biological Macromolecules, 2009, 45(3): 289–292CrossRefGoogle Scholar
  24. [24]
    Kumar P T, Lakshmanan V K, Biswas R, et al. Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. Journal of Biomedical Nanotechnology, 2012, 8(6): 891–900CrossRefGoogle Scholar
  25. [25]
    Kumar P T, Srinivasan S, Lakshmanan V K, et al. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules, 2011, 49(1): 20–31CrossRefGoogle Scholar
  26. [26]
    Ogasawara W, Shenton W, Davis S A, et al. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837CrossRefGoogle Scholar
  27. [27]
    Spinde K, Kammer M, Freyer K, et al. Biomimetic silicification of fibrous chitin from diatoms. Chemistry of Materials, 2011, 23(11): 2973–2978CrossRefGoogle Scholar
  28. [28]
    Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology — A Technology for Crystal Growth and Materials Processing. New York, USA: William Andrew Publishing LLC, 2001Google Scholar
  29. [29]
    Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117–166CrossRefGoogle Scholar
  30. [30]
    Yoshimura M, Byrappa K. Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 2008, 43(7): 2085–2103CrossRefGoogle Scholar
  31. [31]
    Riman R E, Suchanek W L, Lencka M M. Hydrothermal crystallization of ceramics. Annales de Chimie Science des Materiaux, 2002, 27(6): 15–36CrossRefGoogle Scholar
  32. [32]
    Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders. Advances in Science and Technology, 2006, 45: 184–193CrossRefGoogle Scholar
  33. [33]
    Djurisić A B, Xi Y Y, Hsu Y F, et al. Hydrothermal synthesis of nanostructures. Recent Patents on Nanotechnology, 2007, 1(2): 121–128CrossRefGoogle Scholar
  34. [34]
    Mao Y, Park T-J, Zhang F, et al. Environmentally friendly methodologies of nanostructure synthesis. Small, 2007, 3(7): 1122–1139CrossRefGoogle Scholar
  35. [35]
    Stawski D, Rabiej S, Herczynska L, et al. Thermo-gravimetric analysis of chitins of different origin. Journal of Thermal Analysis and Calorimetry, 2008, 93(2): 489–494CrossRefGoogle Scholar
  36. [36]
    Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation & Stability, 2005, 87(3): 389–394CrossRefGoogle Scholar
  37. [37]
    Arora S, Lal S, Kumar S, et al. Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Archives of Applied Science Research, 2001, 3: 188–201Google Scholar
  38. [38]
    Paulino T A, Simionato J I, Garcia J C, et al. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 2006, 64(1): 98–103CrossRefGoogle Scholar
  39. [39]
    Kolen’ko Y V, Maximov V D, Burukhin A A, et al. Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Materials Science and Engineering C, 2003, 23(6–8): 1033–1038CrossRefGoogle Scholar
  40. [40]
    Di Girolamo G, Marra F, Blasi C, et al. Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings. Ceramics International, 2011, 37(7): 2711–2717CrossRefGoogle Scholar
  41. [41]
    Sumana G, Das M, Srivastava S, et al. A novel urea biosensor based on zirconia. Thin Solid Films, 2010, 519(3): 1187–1191CrossRefGoogle Scholar
  42. [42]
    Zuo S-H, Zhang L-F, Yuan H-H, et al. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry, 2009, 74(2): 223–226CrossRefGoogle Scholar
  43. [43]
    Yang J, Wang X, Shi H. An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors and Actuators B: Chemical, 2012, 162(1): 178–183CrossRefGoogle Scholar
  44. [44]
    Liu B, Hu J, Foord J S. Electrochemical detection of DNA hybridization by zirconia modified diamond electrode. Electrochemistry Communications, 2012, 19: 46–49CrossRefGoogle Scholar
  45. [45]
    Zhang C, Li C, Yang J, et al. Tunable luminescence in monodisperse zirconia spheres. Langmuir, 2009, 25(12): 7078–7083CrossRefGoogle Scholar
  46. [46]
    Lavall R L, Assis O B G, Campana-Filho S P. β-chitin from the pens of Loligo sp.: extraction and characterization. Bioresource Technology, 2007, 98(13): 2465–2472CrossRefGoogle Scholar
  47. [47]
    Schleuter D, Günther A, Paasch S, et al. Chitin-based renewable materials from marine sponges for uranium adsorption. Carbohydrate Polymers, 2013, 92(1): 712–718CrossRefGoogle Scholar
  48. [48]
    Cárdenas G, Cabrera G, Taboada E, et al. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 2004, 93(4): 1876–1885CrossRefGoogle Scholar
  49. [49]
    Florek M, Fornal E, Gómez-Romero P, et al. Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton. Materials Science and Engineering C, 2009, 29(4): 1220–1226CrossRefGoogle Scholar
  50. [50]
    del Monte F, Larsen W, Mackenzie J D. Stabilization of tetragonal ZrO2 in ZrO2-SiO2 binary oxides. Journal of the American Ceramic Society, 2000, 83(3): 628–634CrossRefGoogle Scholar
  51. [51]
    Monrós G, Marti MC, Carda J, et al. Effect of hydrolysis time and type of catalyst on the stability of tetragonal zirconia-silica composites synthesized from alkoxides. Journal of Materials Science, 1993, 28(21): 5852–5862CrossRefGoogle Scholar
  52. [52]
    Nouri E, Shahmiri M, Rezaie H R, et al. The effect of alumina content on the structural properties of ZrO2-Al2O3 unstabilized composite nanopowders. International Journal of Industrial Chemistry, 2012, 3: 17 (8 pages)CrossRefGoogle Scholar
  53. [53]
    Song D, Breedveld V, Deng Y. Rheological study, of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions. Journal of Applied Polymer Science, 2011, 122(2): 1019–1029CrossRefGoogle Scholar
  54. [54]
    Song D, Zhao Y, Dong C, et al. Surface modification of cellulose fibers by starch grafting with crosslinkers. Journal of Applied Polymer Science, 2009, 113(5): 3019–3026CrossRefGoogle Scholar
  55. [55]
    Rubio E, Rodriguez-Lugo V, Rodriguez R, et al. Nanozirconia and sulfated zirconia from ammonia zirconium carbonate. Reviews on Advanced Materials Science, 2009, 22: 67–73Google Scholar
  56. [56]
    Mikkonen K S, Schmidt J, Vesterinen A H, et al. Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films. Journal of Materials Science, 2013, 48(12): 4205–4213CrossRefGoogle Scholar
  57. [57]
    Kourieh R, Retailleau L, Bennici S, et al. Influence of the acidic properties of ZrO2 based mixed oxides catalysts in the selective reduction of NOx with n-decane. Catalysis Letters, 2013, 143(1): 74–83CrossRefGoogle Scholar
  58. [58]
    Chen A-J, Wong S-T, Hwang C-C, et al. Highly efficient and regioselective halogenation over well dispersed rhenium-promoted mesoporous zirconia. ACS Catalysis, 2011, 1(7): 786–793CrossRefGoogle Scholar
  59. [59]
    Sarkar D, Swain S K, Adhikari S, et al. Synthesis, mechanical properties and bioactivity of nanostructured zirconia. Materials Science and Engineering C, 2013, 33(6): 3413–3417CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcin Wysokowski
    • 1
  • Mykhaylo Motylenko
    • 2
  • Vasilii V. Bazhenov
    • 3
  • Dawid Stawski
    • 4
  • Iaroslav Petrenko
    • 5
  • Andre Ehrlich
    • 6
  • Thomas Behm
    • 3
  • Zoran Kljajic
    • 7
  • Allison L. Stelling
    • 8
  • Teofil Jesionowski
    • 1
  • Hermann Ehrlich
    • 3
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznańPoland
  2. 2.Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  3. 3.Institute of Experimental PhysicsTU Bergakademie FreibergFreibergGermany
  4. 4.Department of Commodity and Material Sciences and Textile MetrologyTechnical University of ŁódźŁódźPoland
  5. 5.Institut für Eisen- und StahltechnologieTU Bergakademie FreibergFreibergGermany
  6. 6.Institute of MineralogyTU Bergakademie FreibergFreibergGermany
  7. 7.Institute of Marine BiologyUniversity of MontenegroKotorMontenegro
  8. 8.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations