Frontiers of Materials Science

, Volume 6, Issue 3, pp 183–206

Resistive switching effects in oxide sandwiched structures

Review Article

Abstract

Resistive switching (RS) behaviors have attracted great interest due to their promising potential for the data storage. Among various materials, oxide-based devices appear to be more advantageous considering their handy fabrication and compatibility with CMOS technology, though the underlying mechanism is still controversial due to the diversity of RS behaviors. In this review, we focus on the oxide-based RS memories, in which the working mechanism can be understood basically according to a so-called filament model. The filaments formation/rupture processes, approaches developed to detect and characterize filaments, several effective attempts to improve the performances of RS and the quantum conductance behaviors in oxide-based resistive random access memory (RRAM) devices are addressed, respectively.

Keywords

resistive random access memory (RRAM) resistive switching (RS) oxide film filaments quantum conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hickmott T W. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 1962, 33(9): 2669–2682CrossRefGoogle Scholar
  2. [2]
    Sutherland R R. A theory for negative resistance and memory effects in thin insulating films and its application to Au-ZnS-Au devices. Journal of Physics D: Applied Physics, 1971, 4(3): 468–479CrossRefGoogle Scholar
  3. [3]
    Hickmott T W. Potential distribution and negative resistance in thin oxide films. Journal of Applied Physics, 1964, 35(9): 2679–2689CrossRefGoogle Scholar
  4. [4]
    Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Applied Physics Letters, 2000, 76(19): 2749–2751CrossRefGoogle Scholar
  5. [5]
    Lai Y-S, Tu C-H, Kwong D-L, et al. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters, 2005, 87(12): 122101 (3 pages)CrossRefGoogle Scholar
  6. [6]
    Hu B, Zhuge F, Zhu X, et al. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry, 2012, 22(2): 520–526CrossRefGoogle Scholar
  7. [7]
    Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. Nano Letters, 2009, 9(2): 870–874CrossRefGoogle Scholar
  8. [8]
    Jo S H, Kim K H, Lu W. Programmable resistance switching in nanoscale two-terminal devices. Nano Letters, 2009, 9(1): 496–500CrossRefGoogle Scholar
  9. [9]
    Zhuge F, Dai W, He C L, et al. Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters, 2010, 96(16): 163505 (3 pages)CrossRefGoogle Scholar
  10. [10]
    He C L, Zhuge F, Zhou X F, et al. Nonvolatile resistive switching in graphene oxide thin films. Applied Physics Letters, 2009, 95(23): 232101 (3 pages)CrossRefGoogle Scholar
  11. [11]
    Jeong H Y, Kim J Y, Kim JW, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters, 2010, 10(11): 4381–4386CrossRefGoogle Scholar
  12. [12]
    Lee M J, Han S, Jeon S H, et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters, 2009, 9(4): 1476–1481CrossRefGoogle Scholar
  13. [13]
    Oka K, Yanagida T, Nagashima K, et al. Nonvolatile bipolar resistive memory switching in single crystalline NiO hetero-structured nanowires. Journal of the American Chemical Society, 2009, 131(10): 3434–3435CrossRefGoogle Scholar
  14. [14]
    Yun J-B, Kim S, Seo S, et al. Random and localized resistive switching observation in Pt/NiO/Pt. physica status solidi (RRL) — Rapid Research Letters, 2007, 1(6): 280–282CrossRefGoogle Scholar
  15. [15]
    Guan W, Long S, Liu Q, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. Electron Device Letters, IEEE, 2008, 29(5): 434–437CrossRefGoogle Scholar
  16. [16]
    Li Y, Long S, Lv H, et al. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology, 2011, 22(25): 254028CrossRefGoogle Scholar
  17. [17]
    Wang Y, Liu Q, Long S, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4): 045202CrossRefGoogle Scholar
  18. [18]
    Chan M Y, Zhang T, Ho V, et al. Resistive switching effects of HfO2 high-k dielectric. Microelectronic Engineering, 2008, 85(12): 2420–2424CrossRefGoogle Scholar
  19. [19]
    Lin K-L, Hou T-H, Shieh J, et al. Electrode dependence of filament formation in HfO2 resistive-switching memory. Journal of Applied Physics, 2011, 109(8): 084104 (7 pages)CrossRefGoogle Scholar
  20. [20]
    Li S-L, Gang J-L, Li J, et al. Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction. Journal of Physics D: Applied Physics, 2008, 41(18): 185409CrossRefGoogle Scholar
  21. [21]
    Gang J-L, Li S-L, Liao Z-L, et al. Clockwise vs counter-clockwise I-V hysteresis of point-contact metal-tip/Pr0.7Ca0.3MnO3/Pt devices. Chinese Physics Letters, 2010, 27(2): 027301CrossRefGoogle Scholar
  22. [22]
    Yin K, Li M, Liu Y, et al. Resistance switching in polycrystalline BiFeO3 thin films. Applied Physics Letters, 2010, 97(4): 042101 (3 pages)CrossRefGoogle Scholar
  23. [23]
    Yang C H, Seidel J, Kim S Y, et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials, 2009, 8(6): 485–493CrossRefGoogle Scholar
  24. [24]
    Chen X, Wu G, Zhang H, et al. Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates. Applied Physics A: Materials Science & Processing, 2010, 100(4): 987–990CrossRefGoogle Scholar
  25. [25]
    Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials, 2006, 5(4): 312–320CrossRefGoogle Scholar
  26. [26]
    Ni M C, Guo S M, Tian H F, et al. Resistive switching effect in SrTiO3 − δ/Nb-doped SrTiO3 heterojunction. Applied Physics Letters, 2007, 91(18): 183502 (3 pages)CrossRefGoogle Scholar
  27. [27]
    Muenstermann R, Menke T, Dittmann R, et al. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials, 2010, 22(43): 4819–4822CrossRefGoogle Scholar
  28. [28]
    Garcia V, Fusil S, Bouzehouane K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460(7251): 81–84CrossRefGoogle Scholar
  29. [29]
    Jeong W C, Lee B I, Joo S K. Three level, six state multilevel magnetoresistive RAM(MRAM). Journal of Applied Physics, 1999, 85(8): 4782–4784CrossRefGoogle Scholar
  30. [30]
    Wuttig M. Phase-change materials: towards a universal memory? Nature Materials, 2005, 4(4): 265–266CrossRefGoogle Scholar
  31. [31]
    Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories — nanoionic mechanisms, prospects, and challenges. Advanced Materials, 2009, 21(25–26): 2632–2663CrossRefGoogle Scholar
  32. [32]
    Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010, 5(2): 148–153CrossRefGoogle Scholar
  33. [33]
    Sawa A, Fujii T, Kawasaki M, et al. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2004, 85(18): 4073–4075CrossRefGoogle Scholar
  34. [34]
    Dong C Y, Shang D S, Shi L, et al. Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Applied Physics Letters, 2011, 98(7): 072107 (3 pages)CrossRefGoogle Scholar
  35. [35]
    Meijer G I, Staub U, Janousch M, et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(15): 155102CrossRefGoogle Scholar
  36. [36]
    Maksymovych P, Jesse S, Yu P, et al. Polarization control of electron tunneling into ferroelectric surfaces. Science, 2009, 324(5933): 1421–1425CrossRefGoogle Scholar
  37. [37]
    Kim S, Jeong H Y, Choi S Y, et al. Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters, 2010, 97(3): 033508 (3 pages)CrossRefGoogle Scholar
  38. [38]
    Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5 − x/TaO2 − x bilayer structures. Nature Materials, 2011, 10(8): 625–630CrossRefGoogle Scholar
  39. [39]
    Schindler C, Meier M, Waser R, et al. Resistive switching in Ag-Ge-Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS’ 07, 2007, 82–85Google Scholar
  40. [40]
    Guan W, Liu M, Long S, et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters, 2008, 93(22): 223506 (3 pages)CrossRefGoogle Scholar
  41. [41]
    Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011, 22(25): 254002CrossRefGoogle Scholar
  42. [42]
    Chang S H, Chae S C, Lee S B, et al. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Applied Physics Letters, 2008, 92(18): 183507 (3 pages)CrossRefGoogle Scholar
  43. [43]
    Larentis S, Cagli C, Nardi F, et al. Filament diffusion model for simulating reset and retention processes in RRAM. Microelectronic Engineering, 2011, 88(7): 1119–1123CrossRefGoogle Scholar
  44. [44]
    Waser R, Aono M. Nanoionics-based resistive switching memories. Nature Materials, 2007, 6(11): 833–840CrossRefGoogle Scholar
  45. [45]
    Zhu X, Zhuge F, Li M, et al. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. Journal of Physics D: Applied Physics, 2011, 44(41): 415104CrossRefGoogle Scholar
  46. [46]
    Zuo Q, Long S, Liu Q, et al. Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. Journal of Applied Physics, 2009, 106(7): 073724 (5 pages)CrossRefGoogle Scholar
  47. [47]
    Sim H, Seong D-J, Chang M, et al. Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In: 21st Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006, 88–89Google Scholar
  48. [48]
    Li M, Zhuge F, Zhu X, et al. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology, 2010, 21(42): 425202CrossRefGoogle Scholar
  49. [49]
    Zhuge F, Hu B, He C, et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 2011, 49(12): 3796–3802CrossRefGoogle Scholar
  50. [50]
    Bid A, Bora A, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires (diameter ⩾ 15 nm): Applicability of Bloch-Grüneisen theorem. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(3): 035426 (9 pages)CrossRefGoogle Scholar
  51. [51]
    Guo Y, Zhang Y F, Bao X Y, et al. Superconductivity modulated by quantum size effects. Science, 2004, 306(5703): 1915–1917CrossRefGoogle Scholar
  52. [52]
    Koch C C, Scarbrough J O, Kroeger D M. Effects of interstitial oxygen on the superconductivity of niobium. Physical Review B: Condensed Matter and Materials Physics, 1974, 9(3): 888–897CrossRefGoogle Scholar
  53. [53]
    Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters, 2008, 92(22): 222106 (3 pages)CrossRefGoogle Scholar
  54. [54]
    Chae S C, Lee J S, Kim S, et al. Random circuit breaker network model for unipolar resistance switching. Advanced Materials, 2008, 20(6): 1154–1159CrossRefGoogle Scholar
  55. [55]
    Zhuge F, Peng S, He C, et al. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology, 2011, 22(27): 275204CrossRefGoogle Scholar
  56. [56]
    Lee M H, Hwang C S. Resistive switching memory: observations with scanning probe microscopy. Nanoscale, 2011, 3(2): 490–502CrossRefGoogle Scholar
  57. [57]
    Choi S J, Park G S, Kim K H, et al. In situ observation of voltageinduced multilevel resistive switching in solid electrolyte memory. Advanced Materials, 2011, 23(29): 3272–3277CrossRefGoogle Scholar
  58. [58]
    Cho B, Yun J M, Song S, et al. Direct observation of Ag filamentary paths in organic resistive memory devices. Advanced Functional Materials, 2011, 21(20): 3976–3981CrossRefGoogle Scholar
  59. [59]
    Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Letters, 2009, 9(4): 1636–1643CrossRefGoogle Scholar
  60. [60]
    Yao J, Sun Z, Zhong L, et al. Resistive switches and memories from silicon oxide. Nano Letters, 2010, 10(10): 4105–4110CrossRefGoogle Scholar
  61. [61]
    Sakamoto T, Lister K, Banno N, et al. Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91(9): 092110 (3 pages)CrossRefGoogle Scholar
  62. [62]
    Park G S, Li X S, Kim D C, et al. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters, 2007, 91(22): 222103 (3 pages)CrossRefGoogle Scholar
  63. [63]
    Tsuruoka T, Terabe K, Hasegawa T, et al. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology, 2010, 21(42): 425205CrossRefGoogle Scholar
  64. [64]
    Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature, 2005, 433(7021): 47–50CrossRefGoogle Scholar
  65. [65]
    Guo X, Schindler C, Menzel S, et al. Understanding the switchingoff mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007, 91(13): 133513 (3 pages)CrossRefGoogle Scholar
  66. [66]
    Liu Q, Sun J, Lv H, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolytebased ReRAM. Advanced Materials, 2012, 24(14): 1844–1849CrossRefGoogle Scholar
  67. [67]
    Yang Y, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nature Communications, 2012, 3: 732CrossRefGoogle Scholar
  68. [68]
    Peng S, Zhuge F, Chen X, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters, 2012, 100(7): 072101 (4 pages)CrossRefGoogle Scholar
  69. [69]
    Liu Q, Long S, Lv H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10): 6162–6168CrossRefGoogle Scholar
  70. [70]
    Lee W, Jung H J, Lee M H, et al. Oxygen surface exchange at grain boundaries of oxide ion conductors. Advanced Functional Materials, 2012, 22(5): 965–971CrossRefGoogle Scholar
  71. [71]
    Park C, Jeon S H, Chae S C, et al. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Applied Physics Letters, 2008, 93(4): 042102 (3 pages)CrossRefGoogle Scholar
  72. [72]
    Zou C, Chen B, Zhu X-J, et al. Local leakage current behaviours of BiFeO3 films. Chinese Physics B, 2011, 20(11): 117701CrossRefGoogle Scholar
  73. [73]
    Park J-W, Park J-W, Jung K, et al. Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2006, 24(5): 2205–2208CrossRefGoogle Scholar
  74. [74]
    Bae Y C, Lee A R, Kwak J S, et al. Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2 − x/Pt matrix. Current Applied Physics, 2011, 11(2): e66–e69CrossRefGoogle Scholar
  75. [75]
    Zhang H, Liu L, Gao B, et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Applied Physics Letters, 2011, 98(4): 042105 (3 pages)CrossRefGoogle Scholar
  76. [76]
    Liu Q, Long S, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Electron Device Letters, IEEE, 2009, 30(12): 1335–1337CrossRefGoogle Scholar
  77. [77]
    Fang Z, Yu H Y, Liu WJ, et al. Temperature instability of resistive switching on HfOx-based RRAM devices. Electron Device Letters, IEEE, 2010, 31(5): 476–478CrossRefGoogle Scholar
  78. [78]
    Goux L, Czarnecki P, Chen Y Y, et al. Evidences of oxygenmediated resistive-switching mechanism in TiN&HfO2&Pt cells. Applied Physics Letters, 2010, 97(24): 243509 (3 pages)CrossRefGoogle Scholar
  79. [79]
    Tsuruoka T, Terabe K, Hasegawa T, et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Advanced Functional Materials, 2012, 22(1): 70–77CrossRefGoogle Scholar
  80. [80]
    Zhu X, Su W, Liu Y, et al. Observation of conductance quantization in oxide-based resistive switching memory. Advanced Materials, 2012, DOI: 10.1002/adma.201201506Google Scholar
  81. [81]
    Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395(6704): 780–783CrossRefGoogle Scholar
  82. [82]
    Seo J W, Park J W, Lim K S, et al. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters, 2008, 93(22): 223505 (3 pages)CrossRefGoogle Scholar
  83. [83]
    Li C Z, He H X, Bogozi A, et al. Molecular detection based on conductance quantization of nanowires. Applied Physics Letters, 2000, 76(10): 1333–1335CrossRefGoogle Scholar
  84. [84]
    Shu C, Li C Z, He H X, et al. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Physical Review Letters, 2000, 84(22): 5196–5199CrossRefGoogle Scholar
  85. [85]
    Linn E, Rosezin R, Kügeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010, 9(5): 403–406CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of Sciences (CAS)NingboChina
  2. 2.Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of Sciences (CAS)NingboChina

Personalised recommendations