Frontiers of Materials Science

, Volume 6, Issue 2, pp 128–141 | Cite as

Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials

Review Article

Abstract

Recent developments and trends of sol-gel auto-combustion method for spinel ferrite nanomaterial synthesis are briefly discussed and critically analyzed. The analysis of various parameters of reaction which could be used for better understanding of synthesis process and control of microstructure and property of spinel ferrite nanopowder products was the main objective of this review article. Special attention was paid to variety of particle size and phase purity. For these purposes the correlation between complexant, oxygen balance and combustion process chemical additives, as well as heating mechanism and atmosphere, was established. These results are relevant from standpoints of both application and processing of ferrites.

Keywords

ferrite synthesis sol-gel auto-combustion nanomaterial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chavan S M, Babrekar M K, More S S, et al. Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. Journal of Alloys and Compounds, 2010, 507(1): 21–25CrossRefGoogle Scholar
  2. [2]
    Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 721–737CrossRefGoogle Scholar
  3. [3]
    Kulikowski J. Soft magnetic ferrites — development or stagnation? Journal of Magnetism and Magnetic Materials, 1984, 41(1–3): 56–62CrossRefGoogle Scholar
  4. [4]
    Harris V G, Geiler A, Chen Y, et al. Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2035–2047CrossRefGoogle Scholar
  5. [5]
    Qu Y, Yang H, Yang N, et al. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Materials Letters, 2006, 60(29–30): 3548–3552CrossRefGoogle Scholar
  6. [6]
    Kasapoglu N, Birsoz B, Baykal A, et al. Synthesis and magnetic properties of octahedral ferrite NixCo1 − xFe2O4 nanocrystals. Central European Journal of Chemistry, 2007, 5(2): 570–580CrossRefGoogle Scholar
  7. [7]
    Cao S W, Zhu Y J, Cheng G F, et al. ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. Journal of Hazardous Materials, 2009, 171(1–3): 431–435CrossRefGoogle Scholar
  8. [8]
    Liu Y-L, Liu Z-M, Yang Y, et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B: Chemical, 2005, 107(2): 600–604CrossRefGoogle Scholar
  9. [9]
    Ahmed T T, Rahman I Z, Rahman M A. Study on the properties of the copper substituted NiZn ferrites. Journal of Materials Processing Technology, 2004, 153–154: 797–803CrossRefGoogle Scholar
  10. [10]
    Valenzuela R. Magnetic Ceramics. 1st ed. Melbourne: Cambridge University Press, 3–23Google Scholar
  11. [11]
    Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of ZnxNi1 − xFe2O4 spinels prepared by citrate precursor. Journal of Solid State Chemistry, 2005, 178(4): 1080–1086CrossRefGoogle Scholar
  12. [12]
    Gul I H, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by coprecipitation route. Journal of Magnetism and Magnetic Materials, 2008, 320(3–4): 270–275CrossRefGoogle Scholar
  13. [13]
    Zahi S, Hashim M, Daud A R. Synthesis, magnetic properties and microstructure of Ni-Zn ferrite by sol-gel technique. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 177–182CrossRefGoogle Scholar
  14. [14]
    Košak A, Makovec D, Žnidaršič A, et al. Preparation of MnZnferrite with microemulsion technique. Journal of the European Ceramic Society, 2004, 24(6): 959–962CrossRefGoogle Scholar
  15. [15]
    Jiao X, Chen D, Hu Y. Hydrothermal synthesis of nanocrystalline Mx(Zn1 − x)Fe2O4 (M = Ni, Mn, Co; x = 0.40−0.60) powders. Materials Research Bulletin, 2002, 37(9): 1583–1588CrossRefGoogle Scholar
  16. [16]
    Takayama A, Okuya M, Kaneko S. Spray pyrolysis deposition of NiZn ferrite thin films. Solid State Ionics, 2004, 172(1–4): 257–260CrossRefGoogle Scholar
  17. [17]
    Thakur S, Katyal S C, Singh M. Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique. Journal of Magnetism and Magnetic Materials, 2009, 321(1): 1–7CrossRefGoogle Scholar
  18. [18]
    Sarangi P P, Vadera S R, Patra M K, et al. Synthesis and characterization of pure single phase Ni-Zn ferrite nanopowders by oxalate based precursor method. Powder Technology, 2010, 203(2): 348–353CrossRefGoogle Scholar
  19. [19]
    Balaji S, Kalai Selvan K, John Berchmans L, et al. Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Materials Science and Engineering B, 2005, 119(2): 119–124CrossRefGoogle Scholar
  20. [20]
    Aruna S T, Mukasyan A S. Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 2008, 12(3–4): 44–50CrossRefGoogle Scholar
  21. [21]
    Randhawa B S, Dosanjh H S, Kumar N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. Journal of Radioanalytical and Nuclear Chemistry, 2007, 274(3): 581–591CrossRefGoogle Scholar
  22. [22]
    Lee S-P, Chen Y-J, Ho C-M, et al. A study on synthesis and characterization of the core-shell materials of Mn1 − xZnxFe2O4-polyaniline. Materials Science and Engineering B, 2007, 143(1–3): 1–6CrossRefGoogle Scholar
  23. [23]
    Sutka A, Mezinskis G, Pludons A, et al. Characterization of solgel auto-combustion derived spinel ferrite nano-materials. Power Engineering, 2010, 56(3–4): 254–259Google Scholar
  24. [24]
    Sutka A, Gross K A, Mezinskis G, et al. The effect of heating conditions on the properties of nano- and microstructured Ni-Zn ferrite. Physica Scripta, 2011, 83(2): 025601 (6 pages)CrossRefGoogle Scholar
  25. [25]
    Thant A A, Srimala S, Kaung P, et al. Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites. Journal of the Australian Ceramic Society, 2010, 46(1): 11–14Google Scholar
  26. [26]
    Nayak P K. Synthesis and characterization of cadmium ferrite. Materials Chemistry and Physics, 2008, 112(1): 24–26CrossRefGoogle Scholar
  27. [27]
    Shobana M K, Rajendran V, Jeyasubramanian K, et al. Preparation and characterisation of NiCo ferrite nanoparticles. Materials Letters, 2007, 61(13): 2616–2619CrossRefGoogle Scholar
  28. [28]
    Mallapur M M, Shaikh P A, Kambale R C, et al. Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. Journal of Alloys and Compounds, 2009, 479(1–2): 797–802CrossRefGoogle Scholar
  29. [29]
    Yue Z, Zhou J, Li L, et al. Effect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel autocombustion method. Materials Science and Engineering B, 2001, 86(1): 64–69CrossRefGoogle Scholar
  30. [30]
    Azadmanjiri J, Salehani H K, Barati M R, et al. Preparation and electromagnetic properties of Ni1 − xCuxFe2O4 nanoparticle ferrites by sol-gel auto-combustion method. Materials Letters, 2007, 61(1): 84–87CrossRefGoogle Scholar
  31. [31]
    Yue Z, Zhou J, Li L, et al. Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 2000, 208(1–2): 55–60CrossRefGoogle Scholar
  32. [32]
    Selvan R K, Augustin C O, Berchmans L J, et al. Combustion synthesis of CuFe2O4. Materials Research Bulletin, 2003, 38(1): 41–54CrossRefGoogle Scholar
  33. [33]
    Guo L, Shen X, Meng X, et al. Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds, 2010, 490(1–2): 301–306CrossRefGoogle Scholar
  34. [34]
    Gupta N, Verma A, Kashyap S C, et al. Dielectric behavior of spindeposited nanocrystalline nickel-zinc ferrite thin films processed by citrate-route. Solid State Communications, 2005, 134(10): 689–694CrossRefGoogle Scholar
  35. [35]
    Azadmanjiri J. Structural and electromagnetic properties of Ni-Zn ferrites prepared by sol-gel combustion method. Materials Chemistry and Physics, 2008, 109(1): 109–112CrossRefGoogle Scholar
  36. [36]
    de Biasi R S, Figueiredo A B S, Fernandes A A R, et al. Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Communications, 2007, 144(1–2): 15–17CrossRefGoogle Scholar
  37. [37]
    Shukla R, Ningthoujam R S, Umare S S, et al. Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interactions, 2008, 184(1–3): 217–225CrossRefGoogle Scholar
  38. [38]
    Aphesteguy J C, Damiani A, DiGiovanni D, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Physica B: Condensed Matter, 2009, 404(18): 2713–2716CrossRefGoogle Scholar
  39. [39]
    Atif M, Nadeem M, Grossinger R, et al. Studies on the magnetic, magnetostrictive and electrical properties of sol-gel synthesized Zn doped nickel ferrite. Journal of Alloys and Compounds, 2011, 509(18): 5720–5724CrossRefGoogle Scholar
  40. [40]
    Sutka A, Stingaciu M, Mezinskis G, et al. An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor. Journal of Materials Science, 2012, 47(6): 2856–2863CrossRefGoogle Scholar
  41. [41]
    Doroftei C, Rezlescu E, Rezlescu N, et al. Microstructure and humidity sensitive properties of MgFe2O4 ferrite with Sn and Mo substitutions prepared by selfcombustion method. Journal of Optoelectronics and Advanced Materials, 2006, 8(3): 1012–1015Google Scholar
  42. [42]
    Costa A C F M, Lula R T, Kiminami R H G A, et al. Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. Journal of Materials Science, 2006, 41(15): 4871–4875CrossRefGoogle Scholar
  43. [43]
    Guo X, Qi Y, Li X, et al. Preparation, characteization and photocatlytic properties of nanometer zinc ferrite. Journal of University of Science and Technology Beijing, 2004, 11(5): 474–476Google Scholar
  44. [44]
    Airimioaei M, Ciomaga C E, Apostolescu N, et al. Synthesis and functional properties of the Ni1 − xMnxFe2O4 ferrites. Journal of Alloys and Compounds, 2011, 509(31): 8065–8072CrossRefGoogle Scholar
  45. [45]
    Hwang C-C, Tsai J-S, Huang T-H, et al. Combustion synthesis of Ni-Zn ferrite powder — influence of oxygen balance value. Journal of Solid State Chemistry, 2005, 178(1): 382–389CrossRefGoogle Scholar
  46. [46]
    Costa A C F M, Morelli M R, Kiminami R H G A. Combustion synthesis: Effect of urea on the reaction and characteristics of Ni-Zn ferrite powders. Journal of Materials Synthesis and Processing, 2001, 9(6): 347–352CrossRefGoogle Scholar
  47. [47]
    Mangalaraja R V, Ananthakumar S, Manohar P, et al. Initial permeability studies of Ni-Zn ferrites prepared by flash combustion technique. Materials Science and Engineering A, 2003, 355(1–2): 320–324CrossRefGoogle Scholar
  48. [48]
    Mangalaraja R V, Ananthakmar S, Manohar P, et al. Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Materials Science and Engineering A, 2004, 367(1–2): 301–305CrossRefGoogle Scholar
  49. [49]
    Sertkol M, KŌseoglu Y, Baykal A, et al. Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nano particles via microwave-assisted combustion route. Journal of Magnetism and Magnetic Materials, 2010, 322(7): 866–871CrossRefGoogle Scholar
  50. [50]
    Yu L, Cao S, Liu Y, et al. Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. Journal of Magnetism and Magnetic Materials, 2006, 301(1): 100–106CrossRefGoogle Scholar
  51. [51]
    Wu K H, Ting T H, Li M C, et al. Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. Journal of Magnetism and Magnetic Materials, 2006, 298(1): 25–32CrossRefGoogle Scholar
  52. [52]
    Hwang C-C, Tsai J-S, Huang T-H. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates — investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Materials Chemistry and Physics, 2005, 93(2–3): 330–336CrossRefGoogle Scholar
  53. [53]
    Costa A C F M, Morelli M R, Kiminami R H G A. Microstructure and magnetic properties of Ni1 − xZnxFe2O4 synthesized by combustion reaction. Journal of Materials Science, 2007, 42(3): 779–783CrossRefGoogle Scholar
  54. [54]
    George M, Mary John A, Nair S S, et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials, 2006, 302(1): 190–195CrossRefGoogle Scholar
  55. [55]
    Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute, 2007, 31(2): 1789–1795CrossRefGoogle Scholar
  56. [56]
    Patil J Y, Khandekar M S, Mulla I S, et al. Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Current Applied Physics, 2012, 12(1): 319–324CrossRefGoogle Scholar
  57. [57]
    Hwang C C, Wu T Y, Wan J, et al. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Materials Science and Engineering B, 2004, 111(1): 49–56CrossRefGoogle Scholar
  58. [58]
    Wu K H, Ting T H, Yang C C, et al. Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni-Zn ferrite. Materials Science and Engineering B, 2005, 123(3): 227–233CrossRefGoogle Scholar
  59. [59]
    Hu P, Pan D, Wang X F, et al. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. Journal of Magnetism and Magnetic Materials, 2011, 323(5): 569–573CrossRefGoogle Scholar
  60. [60]
    Costa A C F M, Silva V J, Xin C C, et al. Effect of urea and glycine fuels on the combustion reaction synthesis of Mn-Zn ferrites: Evaluation of morphology and magnetic properties. Journal of Alloys and Compounds, 2010, 495(2): 503–505CrossRefGoogle Scholar
  61. [61]
    Verma S, Karande J, Patidar A, et al. Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Materials Letters, 2005, 59(21): 2630–2633CrossRefGoogle Scholar
  62. [62]
    Costa A C F M, Vieira D A, Silva V J, et al. Synthesis of the Ni-Zn-Sm ferrites using microwaves energy. Journal of Alloys and Compounds, 2009, 483(1–2): 37–39CrossRefGoogle Scholar
  63. [63]
    Salunkhe A B, Khot V M, Phadatare M R, et al. Combustion synthesis of cobalt ferrite nanoparticles — Influence of fuel to oxidizer ratio. Journal of Alloys and Compounds, 2012, 514: 91–96CrossRefGoogle Scholar
  64. [64]
    Costa A C F M, Leite A M D, Ferreira H S, et al. Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. Journal of the European Ceramic Society, 2008, 28(10): 2033–2037CrossRefGoogle Scholar
  65. [65]
    Kambale R C, Adhate N R, Chougule B K, et al. Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate-nitrate combustion method. Journal of Alloys and Compounds, 2010, 491(1–2): 372–377CrossRefGoogle Scholar
  66. [66]
    Qiu J, Liang L, Gu M. Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. Materials Science and Engineering A, 2005, 393(1–2): 361–365CrossRefGoogle Scholar
  67. [67]
    Yue Z, Li L, Zhou J, et al. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Materials Science and Engineering B, 1999, 64(1): 68–72CrossRefGoogle Scholar
  68. [68]
    Liu C, Zou B, Rondinone A J, et al. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society, 2000, 122(26): 6263–6267CrossRefGoogle Scholar
  69. [69]
    Azadmanjiri J, Seyyed Ebrahimi S A, Salehani H K. Magnetic properties of nanosize NiFe2O4 particles synthesized by sol-gel auto combustion method. Ceramics International, 2007, 33(8): 1623–1625CrossRefGoogle Scholar
  70. [70]
    Xue H, Li Z, Wang X, et al. Facile synthesis of nanocrystalline zinc ferrite via self-propagating combustion method. Materials Letters, 2007, 61(2): 347–350CrossRefGoogle Scholar
  71. [71]
    Liu J, Zhang W, Guo C, et al. Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol-gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). Journal of Alloys and Compounds, 2009, 479(1–2): 863–869CrossRefGoogle Scholar
  72. [72]
    Waqas H, Qureshi A H. Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process. Journal of Thermal Analysis and Calorimetry, 2009, 98(2): 355–360CrossRefGoogle Scholar
  73. [73]
    Yue Z, Guo W, Zhou J, et al. Synthesis of nanocrystalline ferrites by sol-gel combustion process: the influence of pH value of solution. Journal of Magnetism and Magnetic Materials, 2004, 270(1–2): 216–223CrossRefGoogle Scholar
  74. [74]
    Kapse V D, Ghosh S A, Raghuwanshi F C, et al. Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Materials Chemistry and Physics, 2009, 113(2–3): 638–644CrossRefGoogle Scholar
  75. [75]
    Kadu A V, Jagtap S V, Chaudhari G N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Current Applied Physics, 2009, 9(6): 1246–1251CrossRefGoogle Scholar
  76. [76]
    Vijaya Bhasker Reddy P, Ramesh B, Gopal Reddy C. Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol-gel method. Physica B: Condensed Matter, 2010, 405(7): 1852–1856CrossRefGoogle Scholar
  77. [77]
    Sreeja V, Vijayanand S, Deka S, et al. Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interactions, 2008, 183(1–3): 99–107CrossRefGoogle Scholar
  78. [78]
    Deka S, Joy P A. Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Materials Chemistry and Physics, 2006, 100(1): 98–101CrossRefGoogle Scholar
  79. [79]
    Vivekanandhan S, Venkateswarlu M, Satyanarayana N. Effect of ethylene glycol on polyacrylicacid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4). Materials Letters, 2004, 58(22–23): 2717–2720CrossRefGoogle Scholar
  80. [80]
    Wu K H, Yu C H, Chang Y C, et al. Effect of pH on the formation and combustion process of sol-gel auto-combustion derived NiZn ferrite/SiO2 composites. Journal of Solid State Chemistry, 2004, 177(11): 4119–4125CrossRefGoogle Scholar
  81. [81]
    Costa A C F M, Tortella E, Morelli M R, et al. Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. Journal of Materials Science, 2002, 37(17): 3569–3572CrossRefGoogle Scholar
  82. [82]
    Toksha B G, Shirsath S E, Patange S M, et al. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Communications, 2008, 147(11–12): 479–483CrossRefGoogle Scholar
  83. [83]
    Xiang J, Shen X, Meng X. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Materials Chemistry and Physics, 2009, 114(1): 362–366CrossRefGoogle Scholar
  84. [84]
    Zhang G, Li C, Cheng F, et al. ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical, 2007, 120(2): 403–410CrossRefGoogle Scholar
  85. [85]
    Xiang J, Shen X, Song F, et al. One-dimensional NiCuZn ferrite nanostructures: Fabrication, structure, and magnetic properties. Journal of Solid State Chemistry, 2010, 183(6): 1239–1244CrossRefGoogle Scholar
  86. [86]
    Zhang C-Y, Shen X-Q, Zhou J-X, et al. Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol-Gel Science and Technology, 2007, 42(1): 95–100CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Silicate, High Temperature and Inorganic Nanomaterials Technology, Institute of Silicate MaterialsRiga Technical UniversityRigaLatvia

Personalised recommendations