Advertisement

Frontiers of Materials Science

, Volume 5, Issue 2, pp 98–108 | Cite as

Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX

  • M. SchnickEmail author
  • U. Fuessel
  • M. Hertel
  • A. Spille-Kohoff
  • A. B. Murphy
Research Article

Abstract

Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

Keywords

arc welding numerical simulation GMAW ANSYS CFX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Radaj D. Schweißprozesssimulation: Grundlagen und Anwendung. Düsseldorf: DVS-Verlag, 1999 (in German)Google Scholar
  2. [2]
    Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225CrossRefGoogle Scholar
  3. [3]
    Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration. Metallurgical and Materials Transactions B, 2001, 32(1): 145–161CrossRefGoogle Scholar
  4. [4]
    Haidar J. An analysis of the formation of metal droplets in arc welding. Journal of Physics D: Applied Physics, 1998, 31(10): 1233–1244CrossRefGoogle Scholar
  5. [5]
    Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I: The arc. International Journal of Heat and Mass Transfer, 2007, 50(5–6): 833–846CrossRefGoogle Scholar
  6. [6]
    Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part II: The metal. International Journal of Heat and Mass Transfer, 2007, 50(5–6): 808–820CrossRefGoogle Scholar
  7. [7]
    Lowke J J, Tanaka M. ’LTE-diffusion approximation’ for arc calculations. Journal of Physics D: Applied Physics, 2006, 39(16): 3634–3643CrossRefGoogle Scholar
  8. [8]
    Spille-Kohoff A. Numerische Simulation des ChopArc-Schweißprozesses’ final research report: ChopArc. Stuttgart: Frauenhofer IRB Verlag, 2005Google Scholar
  9. [9]
    Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics, 1997, 30(14): 2033–2042CrossRefGoogle Scholar
  10. [10]
    Sansonnens L, Haidar J, Lowke J J. Prediction of properties of free burning arcs including effects of ambipolar diffusion. Journal of Physics D: Applied Physics, 2000, 33(2): 148–157CrossRefGoogle Scholar
  11. [11]
    Metzke E, Schöpp H. Spektralanalyse Metall-Lichtbogenplasma. Abschlussbericht ChopArc. Stuttgart: Frauenhofer IRB Verlag, 2005 (in German)Google Scholar
  12. [12]
    Goecke S F. Auswirkungen von aktivgaszumischungen im vpmbereich zu argon auf das mig-impulsschweißen von aluminium. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 2004 (in German)Google Scholar
  13. [13]
    Pellerin N, Zielińska S, Pellerin S, et al. Experimental investigations of the arc MIG-MAG welding. AIP Conference Proceedings, 2006, 812: 80–87CrossRefGoogle Scholar
  14. [14]
    Zielińska S, Musioł K, Dzierżęga K, et al. Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Science and Technology, 2007, 16(4): 832–838CrossRefGoogle Scholar
  15. [15]
    Tashiro S, Tanaka M, Nakata K, et al. Plasma properties of helium gas tungsten arc with metal vapour. Science and Technology of Welding and Joining, 2007, 12(3): 202–207CrossRefGoogle Scholar
  16. [16]
    Yamamoto K, Tanaka M, Tashiro S, et al. Numerical simulation for TIG welding of stainless steel with metal vapor. ICCES, 2008, 7(1): 1–6Google Scholar
  17. [17]
    Yamamoto K, Tanaka M, Tashiro S, et al. Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining, 2008, 13(6): 566–572CrossRefGoogle Scholar
  18. [18]
    Lago F, Gonzalez J J, Freton P, et al. A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. Journal of Physics D: Applied Physics, 2003, 37(6): 883–897CrossRefGoogle Scholar
  19. [19]
    Murphy A B. Thermal plasmas in gas mixtures. Journal of Physics D: Applied Physics, 2001, 34(20): R151–R173CrossRefGoogle Scholar
  20. [20]
    Schnick M, Füssel U, Hertel M, et al. Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission. Journal of Physics D: Applied Physics, 2010, 43(2): 022001CrossRefGoogle Scholar
  21. [21]
    Schnick M, Fuessel U, Hertel M, et al. Modelling of gas-metal arc welding taking into account metal vapour. Journal of Physics D: Applied Physics, 2010, 43(43): 434008CrossRefGoogle Scholar
  22. [22]
    Menart J, Malik S. Net emission coefficients for argon-iron thermal plasmas. Journal of Physics D: Applied Physics, 2002, 35 (9): 867–874CrossRefGoogle Scholar
  23. [23]
    Murphy A B. A comparison of treatments of diffusion in thermal plasmas. Journal of Physics D: Applied Physics, 1996, 29(7): 1922–1932CrossRefGoogle Scholar
  24. [24]
    Heberlein J, Mentel J, Pfender E. The anode region of electric arcs: a survey. Journal of Physics D: Applied Physics, 2010, 43(2): 023001CrossRefGoogle Scholar
  25. [25]
    Farmer A J D, Haddad G N. Rayleigh scattering measurements in a free-burning argon arc. Journal of Physics D: Applied Physics, 1988, 21(3): 426–431CrossRefGoogle Scholar
  26. [26]
    Murphy A B, Farmer A J D, Haidar J. Laser-scattering measurements of temperature profiles of a free-burning arc. Applied Physics Letters, 1992, 60(11): 1304–1306CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Schnick
    • 1
    Email author
  • U. Fuessel
    • 1
  • M. Hertel
    • 1
  • A. Spille-Kohoff
    • 2
  • A. B. Murphy
    • 3
  1. 1.Institute of Surface and Manufacturing TechnologyTechnische Universitat DresdenDresdenGermany
  2. 2.CFX Berlin Software GmBHBerlinGermany
  3. 3.CSIRO Materials Science and EngineeringLindfieldAustralia

Personalised recommendations