Frontiers of Materials Science in China

, Volume 4, Issue 1, pp 17–28 | Cite as

Diameters of single-walled carbon nanotubes (SWCNTs) and related nanochemistry and nanobiology

  • Jie Ma
  • Jian-Nong Wang
  • Chung-Jung Tsai
  • Ruth Nussinov
  • Buyong Ma
Review Article

Abstract

We reviewed and examined recent progresses related to the nanochemistry and nanobiology of signal-walled carbon nanotubes (SWCNTs), focusing on the diameters of SWCNTs and how the diameters affect the interactions of SWCNT with protein and DNA, which underlay more complex biological responses. The diameters of SWCNTs are closely related to the electronic structure and surface chemistry of SWCNTs, and subsequently affect the interaction of SWCNTs with membrane, protein, and DNA. The surfaces of SWCNT with smaller diameters are more polar, and these with large diameters are more hydrophobic. The preference of SWCNT to interact with Trp/Phe/Met residues indicates it is possible that SWCNT may interfere with normal protein-protein interactions. SWCNT-DNA interactions often change DNA conformation. Besides the promising future of using SWCNTs as delivering nanomaterial, thermal therapy, and other biological applications, we should thoroughly examine the possible effects of carbon nanotube on interrupting normal protein-protein interaction network and other genetic effects at the cellular level.

Keywords

carbon nanotube (CNT) nanobiology protein DNA toxicity cancer 

References

  1. 1.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 2005, 5(3): 161–171CrossRefPubMedGoogle Scholar
  2. 2.
    Hede S, Huilgol N. “Nano”: the new nemesis of cancer. Journal of Cancer Research and Therapeutics, 2006, 2(4): 186–195CrossRefPubMedGoogle Scholar
  3. 3.
    Portney N G, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry, 2006, 384(3): 620–630CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Y, Yang M, Portney N G, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical Microdevices, 2008, 10(2): 321–328CrossRefPubMedGoogle Scholar
  5. 5.
    Yang J, Lee C H, Ko H J, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angewandte Chemie International Edition English, 2007, 46(46): 8836–8839CrossRefGoogle Scholar
  6. 6.
    Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem, 2008, 3(6): 940–945CrossRefPubMedGoogle Scholar
  7. 7.
    Vega-Villa K R, Takemoto J K, Yáñez J A, et al. Clinical toxicities of nanocarrier systems. Advanced Drug Delivery Reviews, 2008, 60(8): 929–938CrossRefPubMedGoogle Scholar
  8. 8.
    Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opinion on Drug Delivery, 2008, 5(3): 331–342CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y Y, Wang X, Wu B, et al. Dispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor. Sensors and Actuators B: Chemical, 2008, 130(2): 809–815CrossRefGoogle Scholar
  10. 10.
    Tkac J, Whittaker J W, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 2007, 22(8): 1820–1824CrossRefPubMedGoogle Scholar
  11. 11.
    Pope-Harman A, Cheng M M, Robertson F, et al. Biomedical nanotechnology for cancer. Medical Clinics of North America, 2007, 91(5): 899–927CrossRefPubMedGoogle Scholar
  12. 12.
    Peters R. Nanoscopic medicine: the next frontier. Small, 2006, 2(4): 452–456CrossRefPubMedGoogle Scholar
  13. 13.
    Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7(4): 1298–1314CrossRefPubMedGoogle Scholar
  14. 14.
    Ajayan P M, Colliex C, Lambert J M, et al. Growth of manganese filled carbon nanofibers in the vapor phase. Physical Review Letters, 1994, 72(11): 1722–1725CrossRefPubMedADSGoogle Scholar
  15. 15.
    Dravid V P, Lin X, Wang Y, et al. Buckytubes and derivatives: their growth and implications for buckyball formation. Science, 1993, 259(5101): 1601–1604CrossRefPubMedADSGoogle Scholar
  16. 16.
    Colbert D T, Zhang J, McClure S M, et al. Growth and sintering of fullerene nanotubes. Science, 1994, 266(5188): 1218–1222CrossRefPubMedADSGoogle Scholar
  17. 17.
    Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 1995, 99(27): 10694–10697CrossRefGoogle Scholar
  18. 18.
    Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487CrossRefPubMedADSGoogle Scholar
  19. 19.
    Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512–514CrossRefPubMedADSGoogle Scholar
  20. 20.
    Li S H, Liu H, Li H F, et al. The controlled pattern growth of aligned carbon nanotubes. Synthetic Metals, 2003, 135–136(4): 815–816CrossRefGoogle Scholar
  21. 21.
    Xu D S, Guo G, Gui L, et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Applied Physics Letters, 1999, 75(4): 481–483CrossRefADSGoogle Scholar
  22. 22.
    Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 1998, 289(5–6): 602–610CrossRefADSGoogle Scholar
  23. 23.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58CrossRefADSGoogle Scholar
  24. 24.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603–605CrossRefADSGoogle Scholar
  25. 25.
    Bethune D S, Klang C H, de Vries M S, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607CrossRefADSGoogle Scholar
  26. 26.
    Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 1995, 243(1–2): 49–54CrossRefGoogle Scholar
  27. 27.
    Zhang M F, Yudasaka M, Iijima S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation. The Journal of Physical Chemistry B, 2004, 108(34): 12757–12762CrossRefGoogle Scholar
  28. 28.
    Kiang C H. Growth of large-diameter single-walled carbon nanotubes. The Journal of Physical Chemistry A, 2000, 104(11): 2454–2456CrossRefGoogle Scholar
  29. 29.
    Lebedkin S, Schweiss P, Renker B, et al. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon, 2002, 40(3): 417–423CrossRefGoogle Scholar
  30. 30.
    Yang Q H, Bai S, Sauvajol J-L, et al. Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition. Advanced Materials, 2003, 15(10): 792–795CrossRefGoogle Scholar
  31. 31.
    Lupo F, Rodriguezmanzo J, Zamudio A, et al. Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen. Chemical Physics Letters, 2005, 410(4–6): 384–390CrossRefADSGoogle Scholar
  32. 32.
    Huang S M, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Letters, 2004, 4(6): 1025–1028CrossRefADSGoogle Scholar
  33. 33.
    Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902CrossRefGoogle Scholar
  34. 34.
    Ma J, Wang J N, Wang X X. Large-diameter and water-dispersible single-walled carbon nanotubes: synthesis, characterization and applications. Journal of Materials Chemistry, 2009, 19(19): 3033–3041CrossRefGoogle Scholar
  35. 35.
    Moors M, Amara H, de Bocarmé T V, et al. Early stages in the nucleation process of carbon nanotubes. ACS Nano, 2009, 3(3): 511–516CrossRefPubMedGoogle Scholar
  36. 36.
    Ohta Y, Okamoto Y, Irle S, et al. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations. ACS Nano, 2008, 2(7): 1437–1444CrossRefPubMedGoogle Scholar
  37. 37.
    Jin C, Suenaga K, Iijima S. How does a carbon nanotube grow? An in situ investigation on the cap evolution. ACS Nano, 2008, 2(6): 1275–1279CrossRefPubMedGoogle Scholar
  38. 38.
    Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, 2008, 100(5): 056105 (4 pages)CrossRefPubMedADSGoogle Scholar
  39. 39.
    Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Letters, 2009, 9(4): 1673–1677CrossRefPubMedADSGoogle Scholar
  40. 40.
    Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 1992, 68(10): 1579–1581CrossRefPubMedADSGoogle Scholar
  41. 41.
    Kam N W, O’Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences USA, 2005, 102(33): 11600–11605CrossRefADSGoogle Scholar
  42. 42.
    Painter G S, Ellis D E. Electronic band structure and optical properties of graphite from a variational approach. Physical Review B, 1970, 1(12): 4747–4752CrossRefADSGoogle Scholar
  43. 43.
    Blase X, Benedict L X, Shirley E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 1994, 72(12): 1878–1881CrossRefPubMedADSGoogle Scholar
  44. 44.
    Zhang H, Liu Y, Cao L. A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction. Advanced Materials, 2009, 21(7): 813–816CrossRefGoogle Scholar
  45. 45.
    Kanungo M, Lu H, Malliaras G G, et al. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science, 2009, 323(5911): 234–237CrossRefPubMedGoogle Scholar
  46. 46.
    Wang J, Li Y. Selective band structure modulation of single-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society, 2009, 131(15): 5364–5365CrossRefGoogle Scholar
  47. 47.
    Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomaterialia, 2008, 4(6): 1593–1602CrossRefPubMedGoogle Scholar
  48. 48.
    Tasis D, Papagelis K, Douroumis D, et al. Diameter-selective solubilization of carbon nanotubes by lipid micelles. Journal of Nanoscience and Nanotechnology, 2008, 8(1): 420–423CrossRefPubMedGoogle Scholar
  49. 49.
    Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17): 8670–8673CrossRefPubMedGoogle Scholar
  50. 50.
    Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008, 24(13): 6409–6413CrossRefPubMedGoogle Scholar
  51. 51.
    Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. The Journal of Toxicological Sciences, 2008, 33(1): 105–116CrossRefPubMedGoogle Scholar
  52. 52.
    Kaiser J P, Wick P, Manser P, et al. Single walled carbon nanotubes (SWcarbon nanotube) affect cell physiology and cell architecture. Journal of Materials Science — Materials in Medicine, 2008, 19(4): 1523–1527CrossRefPubMedGoogle Scholar
  53. 53.
    Wu X C, Zhang W J, Sammynaiken R, et al. Non-functionalized carbon nanotube binding with hemoglobin. Colloids and Surfaces B Biointerfaces, 2008, 65(1): 146–149CrossRefGoogle Scholar
  54. 54.
    Li X, Chen W, Zhan Q, et al. Direct measurements of interactions between polypeptides and carbon nanotubes. Journal of Physical Chemistry B, 2006, 110(25): 12621–12625CrossRefGoogle Scholar
  55. 55.
    Poenitzsch V Z, Winters D C, Xie H, et al. Effect of electrondonating and electron-withdrawing groups on peptide/single-walled carbon nanotube interactions. Journal of the American Chemical Society, 2007, 129(47): 14724–14732CrossRefPubMedGoogle Scholar
  56. 56.
    Su Z, Mui K, Daub E, et al. Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. Journal of Physical Chemistry B, 2007, 111(51): 14411–14417CrossRefGoogle Scholar
  57. 57.
    Su Z, Leung T, Honek J F. Conformational selectivity of peptides for single-walled carbon nanotubes. Journal of Physical Chemistry B, 2006, 110(47): 23623–23627CrossRefGoogle Scholar
  58. 58.
    Brown S, Jespersen T S, Nygard J A. genetic analysis of carbonnanotube-binding proteins. Small, 2008, 4(4): 416–420CrossRefPubMedGoogle Scholar
  59. 59.
    Ma B, Elkayam T, Wolfson H, et al. Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proceedings of National Academy of Sciences USA, 2003, 100(10): 5772–5777CrossRefADSGoogle Scholar
  60. 60.
    Linse S, Cabaleiro-Lago C, Xue W F, et al. Nucleation of protein fibrillation by nanoparticles. Proceedings of National Academy of Sciences USA, 2007, 104(21): 8691–8696CrossRefADSGoogle Scholar
  61. 61.
    Ma B, Nussinov R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Current Opinion in Chemical Biology, 2006, 10(5): 445–452CrossRefPubMedGoogle Scholar
  62. 62.
    Ma B, Nussinov R. Trp/Met/Phe hot spots in protein-protein interactions: potential targets in drug design. Current Topics in Medicinal Chemistry, 2007, 7(10): 999–1005CrossRefPubMedGoogle Scholar
  63. 63.
    Meng J, Song L, Xu H, et al. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses. Nanomedicine, 2005, 1(2): 136–142PubMedGoogle Scholar
  64. 64.
    Zhao C, Ren J, Qu X. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released. Chemistry (Easton), 2008, 14(18): 5435–5439Google Scholar
  65. 65.
    Zhao X, Johnson J K. Simulation of adsorption of DNA on carbon nanotubes. Journal of the American Chemical Society, 2007, 129(34): 10438–10445CrossRefPubMedGoogle Scholar
  66. 66.
    Johnson R R, Charlie Johnson A T, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Letters, 2008, 8(1): 69–75CrossRefPubMedADSGoogle Scholar
  67. 67.
    Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B–A transition in solution. Nucleic Acids Research, 2006, 34(13): 3670–3676CrossRefPubMedGoogle Scholar
  68. 68.
    Peng Y, Li X, Ren J, et al. Single-walled carbon nanotubes binding to human telomeric i-motif DNA: significant acceleration of S1 nuclease cleavage rate. Chemical Communications (Cambridge), 2007, (48): 5176–5178Google Scholar
  69. 69.
    Kisin E R, Murray A R, Keane M J, et al. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. Journal of Toxicology and Environmental Health A, 2007, 70(24): 2071–2079CrossRefGoogle Scholar
  70. 70.
    Sharma C S, Sarkar S, Periyakaruppan A, et al. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. Journal of Nanoscience and Nanotechnology, 2007, 7(7): 2466–2472CrossRefPubMedGoogle Scholar
  71. 71.
    Zhu L, Chang D W, Dai L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letters, 2007, 7(12): 3592–3597CrossRefPubMedADSGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Jie Ma
    • 1
  • Jian-Nong Wang
    • 2
  • Chung-Jung Tsai
    • 3
  • Ruth Nussinov
    • 3
    • 4
  • Buyong Ma
    • 3
  1. 1.Shanghai Key Laboratory for Laser Processing and Materials Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory for Metallic Functional Materials, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and EngineeringTongji UniversityShanghaiChina
  3. 3.Basic Science Program, SAIC-Frederick, Inc.Center for Cancer Research Nanobiology Program, NCI-Frederick, NIHFrederickUSA
  4. 4.Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations