Skip to main content
Log in

Influence of surface-modified TiO2 nanoparticles on fracture behavior of injection molded polypropylene

  • Communication
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

We prepared surface-modified TiO2 nanoparticle (21 nm)/polypropylene nanocomposites using a twinscrew extruder and an injection molding machine. The TEM (transmission electron microscopy) and SEM (scanning electron microscopy) images showed homogeneous dispersion of nano-TiO2 at 1 vol.% filler content and weak nanoparticle matrix interfacial adhesion. It was found that the essential work of fracture (EWF) approach, usually characterizing fracture toughness of ductile materials, was no longer applicable to the nanocomposite samples because of the extreme crack blunting and tearing processes observed in the EWF tests. As an alternative approach, the specific essential work-related yield was used for assessment of the plane-strain toughness, as suggested in the literature. The results indicated that the addition of 1 vol.% nano-TiO2 did not toughen the polypropylene (PP) matrix at all. On the other hand, it was observed from the EWF tensile curves that the nanoparticles enhanced the ductility of the PP matrix greatly, the reason of which was probably ascribed to the high level of molecular orientation of the injection molded samples, as revealed by the polarized optical microscopy (POM). Because of the highly ductile behavior induced by the nanoparticles, the fracture energy achieved two-to three-fold increase, depending on the ligament lengths of the samples. The difference between the toughness and ductility of nanocomposites was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Broberg K B. Critical review of some theories in fracture mechanics. International Journal of Fracture, 1968, 4(1): 11–19

    Google Scholar 

  2. Mai Y-W, Powell P. Essential work of fracture and j-integral measurements for ductile polymers. Journal of Polymer Science Part B: Polymer Physics, 1991, 29(7): 785–793

    Article  CAS  Google Scholar 

  3. Tordjeman P, Robert C, Marin G, et al. The effect of alpha, beta crystalline structure on the mechanical properties of polypropylene. European Physical Journal E, 2001, 4(4): 459–465

    Article  CAS  Google Scholar 

  4. Gong G, Xie B H, Yang W, et al. Essential work of fracture (EWF) analysis for polypropylene grafted with maleic anhydride modified polypropylene/calcium carbonate composites. Polymer Testing, 2005, 24(4): 410–417

    Article  CAS  Google Scholar 

  5. Ferrer-Balas D, Maspoch M L, Martinez A B, et al. Fracture behaviour of polypropylene films at different temperatures: assessment of the EWF parameters. Polymer, 2001, 42(6): 2665–2674

    Article  CAS  Google Scholar 

  6. Maspoch M L, Gamez-Perez J, Gordillo A, et al. Characterisation of injected EPBC plaques using the essential work of fracture (EWF) method. Polymer, 2002, 43(15): 4177–4183

    Article  CAS  Google Scholar 

  7. Karger-Kocsis J, Mouzakis D E. Effects of injection molding-induced morphology on the work of fracture parameters in rubber-toughened polypropylenes. Polymer Engineering and Science, 1999, 39(8): 1365–1374

    Article  CAS  Google Scholar 

  8. Heino M, Hietaoja P, Seppala J, et al. Studies on fracture behavior of tough PA6/PP blends. Journal of Applied Polymer Science, 1997, 66(12): 2209–2220

    Article  CAS  Google Scholar 

  9. Yang J L, Zhang Z, Zhang H. The essential work of fracture of polyamide 66 filled with TiO2 nanoparticles. Composites Science and Technology, 2005, 65(15–16): 2374–2379

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang Z, Yang J L, et al. Temperature dependence of crack initiation fracture toughness of various nanoparticles filled polyamide 66. Polymer, 2006, 47(2): 679–689

    Article  CAS  Google Scholar 

  11. Bureau M N, Perrin-Sarazin F, Ton-That M T. Polyolefin nanocomposites: Essential work of fracture analysis. Polymer Engineering and Science, 2004, 44(6): 1142–1151

    Article  CAS  Google Scholar 

  12. Tjong S C, Xu S A, Li R K Y, et al. Fracture characteristics of short glass fibre/maleated styrene-ethylene-butylene-styrene/polypropylene hybrid composite. Polymer International, 2002, 51(11): 1248–1255

    Article  CAS  Google Scholar 

  13. Jain S, Goossens H, van Duin M, et al. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer, 2005, 46(20): 8805–8818

    CAS  Google Scholar 

  14. Chan C M, Wu J S, Li J X, et al. Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43(10): 2981–2992

    Article  CAS  Google Scholar 

  15. Starke J U, Michler G H, Grellmann W, et al. Fracture toughness of polypropylene copolymers: influence of interparticle distance and temperature. Polymer, 1998, 39(1): 75–82

    Article  CAS  Google Scholar 

  16. Fujiyama M. Processing-induced morphology. In: Karger-Kocsis J, eds. Polypropylene: An A-Z Reference. Dordrecht, The Netherlands: Kluwer Academic, 1999, 668–677

    Google Scholar 

  17. Kalay G, Bevis M J. Application of shear-controlled orientation in injection molding of isotactic polypropylene. In: Karger-Kocsis J, eds. Polypropylene: An A-Z Reference. Dordrecht, The Netherlands: Kluwer Academic, 1999, 38–46

    Google Scholar 

  18. Dangtungee R, Yun J, Supaphol P. Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene. Polymer Testing, 2005, 24(1): 2–11

    Article  CAS  Google Scholar 

  19. Mishra S, Sonawane S, Mukherji A, et al. Effect of nanosize CaSO4 and Ca3(PO4)2 particles on the rheological behavior of polypropylene and its simulation with a mathematical model. Journal of Applied Polymer Science, 2006, 100(5): 4190–4196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, Z., Park, HW. et al. Influence of surface-modified TiO2 nanoparticles on fracture behavior of injection molded polypropylene. Front. Mater. Sci. China 2, 9–15 (2008). https://doi.org/10.1007/s11706-008-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-008-0002-z

Keywords

Navigation