Skip to main content
Log in

Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

For high performance supercapacitors, novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique α-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the heterocomposition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the α-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell α-Ni (OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed α-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091

    Article  CAS  Google Scholar 

  2. Yan J, Li S H, Lan B B, Wu Y C, Lee P S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598

    Article  CAS  Google Scholar 

  3. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365

    Article  CAS  Google Scholar 

  4. Patrice S, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854

    Article  CAS  Google Scholar 

  5. Thubsuang U, Chotirut S, Thongnok A, Promraksa A, Nisoa M, Manmuanpom N, Wongkasemjit S, Chaisuwan T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15

    Google Scholar 

  6. Bi S, Banda H, Chen M, Niu L, Chen M Y, Wu T Z, Wang J S, Wang R X, Feng J M, Chen T Y, Dincă M, Kornyshev A A, Feng G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560

    Article  CAS  PubMed  Google Scholar 

  7. Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q L, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19

    Google Scholar 

  8. Mofarah S S, Adabifiroozjaei E, Yao Y, Koshy P, Lim S, Webster R, Liu X H, Nekouei R K, Cazorla C, Liu Z, et al. Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2−x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10(1): 2594–2602

    Article  CAS  Google Scholar 

  9. Huang Y, Yang C, Deng B H, Wang C, Li Q W, Thibault C D, Huang K, Huo K F, Wu H. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205

    Article  CAS  Google Scholar 

  10. Morag A, Maman N, Froumin N, Ezersky V, Rechav K, Jelinek R. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852

    Article  CAS  Google Scholar 

  11. Yu X Y, Lou X W. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628

    Article  CAS  Google Scholar 

  12. Kulkarni P, Nataraj S K, Balakrishna R G, Nagaraju D H, Reddy M V. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094

    CAS  Google Scholar 

  13. Banerjee J, Dutta K, Kader M A, Nayak S K. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921

    Article  CAS  Google Scholar 

  14. Girl S, Ghosh D, Das C K. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324

    Article  CAS  Google Scholar 

  15. Liu P B, Yan J, Guang Z X, Huang Y, Li X F, Huang W H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130

    Article  CAS  Google Scholar 

  16. Gao B A, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37

    CAS  Google Scholar 

  17. Li K Z, Zhao B C, Bai J, Ma H Y, Fang Z T, Zhu X B, Sun Y P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co (OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982

    Article  CAS  Google Scholar 

  18. Pan Y M, Mei Z S, Yang Z H, Zhang W X, Pei B, Yao H X. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403

    Article  CAS  Google Scholar 

  19. Yang Z H, Xu F F, Zhang W X, Mei Z S, Pei B, Zhu X. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31

    Article  CAS  Google Scholar 

  20. Shao Z M, Fan X M, Liu X Y, Yang Z H, Wang L, Chen Z X, Zhang W X. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496

    Article  CAS  Google Scholar 

  21. Xu J S, Fan X M, Xia Q, Shao Z M, Pei B, Yang Z H, Chen Z X, Zhang W X. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956

    Article  CAS  Google Scholar 

  22. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499

    Article  CAS  PubMed  Google Scholar 

  23. Li J B, Cao W, Zhou N, Xu F, Chen N, Liu Y, Du G P. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as highperformance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149

    Article  CAS  Google Scholar 

  24. Krishnaveni M, Suresh C M, Wu J J, Asiri A M, Anandan S, Ashokkumar M. Synthesis of 3D marigold flower-like rGO/BN/Ni (OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101

    Article  CAS  Google Scholar 

  25. Mohammed M M, Abd-Elrahim A, Chun D M. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710

    Article  CAS  Google Scholar 

  26. Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

    Article  PubMed  CAS  Google Scholar 

  27. Yu G H, Xie X, Pan L J, Bao Z N, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234

    Article  CAS  Google Scholar 

  28. Chen G, Liaw S L, Li B S, Xu Y, Dunwell M, Deng S G, Fan H Y, Luo H M. Microwave-assisted synthesis of hybrid CoxNi1−x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343

    Article  CAS  Google Scholar 

  29. Li M, Xu S H, Zhu Y P, Yang P X, Wang L W, Chu P K. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371

    Article  CAS  Google Scholar 

  30. Chuo H X, Gao H, Yang Q, Zhang N, Bu W B, Zhang X T. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469

    CAS  Google Scholar 

  31. Ke Q Q, Guan C, Zheng M R, Hu Y T, Ho K H, Wang J. 3D hierarchical SnO2@Ni(OH)2 core-shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542

    CAS  Google Scholar 

  32. Chen H, Hu L F, Yan Y, Che R C, Chen M, Wu L M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646

    Article  CAS  Google Scholar 

  33. Ma Q, Hu W M, Peng D C, Shen R H, Xia X H, Chen H, Chen Y X, Liu H B. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874

    Article  CAS  Google Scholar 

  34. Chen H, Zhou S X, Wu L M. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630

    Article  CAS  Google Scholar 

  35. Shi X, Key J, Ji S, Linkov V, Liu F S, Wang H, Cai H J, Wang R F. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870

    Article  CAS  Google Scholar 

  36. Jiang H, Li C Z, Sun T, Ma J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608

    Article  CAS  Google Scholar 

  37. Ren Q, Wang R F, Wang H, Key J L, Brett D J L, Ji S, Yin S B, Shen P K. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595

    CAS  Google Scholar 

  38. Yuan S, Ma D L, Wang S, Liu Y B, Yang X H, Cao Z Y. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107

    Article  CAS  Google Scholar 

  39. Xu J, Deng Y Q, Luo Y, Mao W, Yang X J, Han Y F. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234

    Article  CAS  Google Scholar 

  40. Han Y F, Chen F X, Zhong Z Y, Ramesh K, Chen L, Widjaja E. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456

    Article  CAS  PubMed  Google Scholar 

  41. Yuan S, Chen W B, Zhang L, Liu Z K, Liu J Q, Liu T, Li G J, Wang Q. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319

    Article  CAS  Google Scholar 

  42. Feng L Y, Sun J K, Liu Y H, Li X X, Ye L, Zhao L J. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70

    Article  CAS  Google Scholar 

  43. Ramesh S, Karuppasamy K, Msolli S, Kim H S, Kim H S, Kim J H. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527

    Article  CAS  Google Scholar 

  44. Ma Y Y, Wang R F, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532

    Article  CAS  Google Scholar 

  45. Tao P, Shao M H, Song C W, Wu S H, Cheng M R, Cui Z. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133

    Article  CAS  Google Scholar 

  46. Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619

    Article  Google Scholar 

  47. Tang Y F, Liu Y Y, Yu S X, Zhao Y F, Mu S C, Gao F M. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166

    Article  CAS  Google Scholar 

  48. Nathan T, Cloke M, Prabaharan S R S. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88

    Article  Google Scholar 

  49. Tang Y F, Liu Y Y, Guo W C, Chen T, Wang H C, Yu S X, Gao F M. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876

    Article  CAS  Google Scholar 

  50. Xiong X H, Ding D, Chen D C, Waller G, Bu Y F, Wang Z X, Liu M L. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161

    Article  CAS  Google Scholar 

  51. Ye L, Zhao L J, Zhang H, Zhang B, Wang H Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168

    CAS  Google Scholar 

  52. Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 21908037, 91834301) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2019HGBZ0147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Shi, Zeheng Yang or Weixin Zhang.

Electronic Supplementary Material

11705_2021_2036_MOESM1_ESM.pdf

Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Jiang, M., Shi, K. et al. Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors. Front. Chem. Sci. Eng. 15, 1322–1331 (2021). https://doi.org/10.1007/s11705-021-2036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2036-z

Keywords

Navigation