Layer-like FAU-type zeolites: A comparative view on different preparation routes

  • 10 Accesses


The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. 1.

    Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161

  2. 2.

    Bathen D, Breitbach M. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48

  3. 3.

    Mckee D W. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14

  4. 4.

    McDaniel C V, Maher P K. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10

  5. 5.

    Baker R W, Ciapetta F G, Wilson C P Jr, Maher P K. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04

  6. 6.

    Dobres R M. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04

  7. 7.

    Seubold F H. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09

  8. 8.

    Milton R M. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14

  9. 9.

    Breck D W. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21

  10. 10.

    Kühl G H. Crystallization of low-silica faujasite (SiO2/Al2O3∼ 2.0). Zeolites, 1987, 7(5): 451–457

  11. 11.

    ExxonMobil Oil Corp. Manufacture of low silica faujasite. GB Patent, 1 580 928, 1980-12-10

  12. 12.

    Auerbach S M, Henson N J, Cheetham A K, Metiu H I. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608

  13. 13.

    Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614

  14. 14.

    Post M F M. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443

  15. 15.

    Mehlhorn D, Inayat A, Schwieger W, Valiullin R, Kärger J. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686

  16. 16.

    Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499

  17. 17.

    Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsøe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3–4): 117–122

  18. 18.

    Groen J C, Zhu W, Brouwer S, Huynink S J, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360

  19. 19.

    Kärger J, Valiullin R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197

  20. 20.

    Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen J, Pérez-Ramírez J, Sels B. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352

  21. 21.

    Su B-L, Sanchez C, Yang X-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678

  22. 22.

    Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928

  23. 23.

    Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890

  24. 24.

    Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376

  25. 25.

    Schwieger W, Machoke A G, Reiprich B, Weissenberger T, Selvam T, Hartmann M. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145

  26. 26.

    Roth W J, Gil B, Makowski W, Marszalek B, Eliášová P. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438

  27. 27.

    Přech J, Pizarro P, Serrano D, Čejka J. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306

  28. 28.

    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

  29. 29.

    Inayat A, Knoke I, Spiecker E, Schwieger W. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965

  30. 30.

    Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

  31. 31.

    Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349

  32. 32.

    Bergerhoff G, Koyama H, Nowacki W. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419 (in German)

  33. 33.

    Bergerhoff G, Baur W H, Nowacki W. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200

  34. 34.

    Barrer R. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)

  35. 35.

    Breck D W, Flanigen E. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60

  36. 36.

    Kerr G T. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596

  37. 37.

    Maher P K, McDaniel C V. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20

  38. 38.

    McDaniel C, Maher P. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194

  39. 39.

    Hansford R C, Ward J W. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320

  40. 40.

    Kerr G T. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782

  41. 41.

    Kerr G T, Miale J N, Mikovsky R J. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03

  42. 42.

    Scherzer J. Dealuminated faujasite-type structures with SiO2Al2O3 ratios over 100. Journal of Catalysis, 1978, 54(2): 285–288

  43. 43.

    Tsutsumi K, Kajiwara H, Takahashi H. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805

  44. 44.

    Lohse U, Engelhardt G, Patzelova V. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167

  45. 45.

    Zukal A, Patzelova V, Lohse U. Secondary porous structure of dealuminated Y zeolites. Zeolites, 1986, 6(2): 133–136

  46. 46.

    Lohse U, Stach H, Thamm H, Schirmer W, Isirikjan A, Regent N, Dubinin M. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German)

  47. 47.

    Skeels G, Breck D. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87

  48. 48.

    Beyer H K, Belenykaja I. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210

  49. 49.

    Qin Z, Cychosz K A, Melinte G, El Siblani H, Gilson J P, Thommes M, Fernandez C, Mintova S, Ersen O, Valtchev V. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276

  50. 50.

    de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276

  51. 51.

    Van Mao R. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610

  52. 52.

    García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994

  53. 53.

    Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976

  54. 54.

    Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

  55. 55.

    Zhang J, Bai S, Chen Z, Wang Y, Dong L, Zheng H, Cai F, Hong M. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764

  56. 56.

    Zhao J, Yin Y, Li Y, Chen W, Liu B. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411

  57. 57.

    Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274

  58. 58.

    Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461

  59. 59.

    Delprato F, Delmotte L, Guth J, Huve L. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramole-cules as templates. Zeolites, 1990, 10(6): 546–552

  60. 60.

    Matsukata M, Kizu K, Ogura M, Kikuchi E. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516

  61. 61.

    Terasaki O, Ohsuna T, Alfredsson V, Bovin J, Watanabe D, Carr S W, Anderson M W. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458

  62. 62.

    Treacy M M J, Newsam J M, Beyerlein R A, Leonowicz M E, Vaughan D E W. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213

  63. 63.

    Julius C. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19

  64. 64.

    Kokotailo G T, Ciric J. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121

  65. 65.

    Newsam J, Treacy M, Vaughan D, Strohmaier K, Mortier W. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495

  66. 66.

    Wang B, Dutta P K. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208

  67. 67.

    Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

  68. 68.

    Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673

  69. 69.

    Shanbhag G V, Choi M, Kim J, Ryoo R. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92

  70. 70.

    Liu L, Wang H, Wang R, Sun C, Zeng S, Jiang S, Zhang D, Zhu L, Zhang Z. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305

  71. 71.

    Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617

  72. 72.

    Rimer J, Kumar M, Li R, Lupulescu A, Oleksiak M. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771

  73. 73.

    Rioland G, Albrecht S, Josien L, Vidal L, Daou T J. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681

  74. 74.

    Wang L, Sang S, Meng S, Zhang Y, Qi Y, Liu Z. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8–9): 1675–1678

  75. 75.

    Inayat A, Schneider C, Schwieger W. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281

  76. 76.

    Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045

  77. 77.

    Hanif N, Anderson M W, Alfredsson V, Terasaki O. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357

  78. 78.

    Anderson M W, Pachis K S, Prébin F, Carr S W, Terasaki O, Ohsuna T, Alfreddson V. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664

  79. 79.

    Arhancet J P, Davis M E. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569

  80. 80.

    Burkett S L, Davis M E. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282

  81. 81.

    Belandria L, Gonzalez C, Aguirre F, Sosa E, Uzcátegui A, González G, Brito J, Gonzalez-Cortes S, Imbert F. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1–2): 164–172

  82. 82.

    Lechert H, Kacirek H. Investigations on the crystallization of X-type zeolites. Zeolites, 1991, 11(7): 720–728

  83. 83.

    Ginter A T B, Radke C J. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992

  84. 84.

    Khaleel M, Xu W, Lesch D A, Tsapatsis M. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213

  85. 85.

    Tang T, Zhang L, Dong H, Fang Z, Fu W, Yu Q, Tang T. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717

  86. 86.

    Jia X, Han L, Ma Y, Che S. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100

  87. 87.

    Du Y, Kong Q, Gao Z, Wang Z, Zheng J, Qin B, Pan M, Li W, Li R. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403

  88. 88.

    Liu L, Wang H, Wang Z, Zhu L, Huang L, Yu L, Fan J, Yao Y, Liu S, Zou J, Zeng X. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824

  89. 89.

    Gaber S, Gaber D, Ismail I, Alhassan S M, Khaleel M. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690

  90. 90.

    Nik O G, Nohair B, Kaliaguine S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229

  91. 91.

    Ferdov S. FAU-type zeolite nanosheets from additives-free system. Microporous and Mesoporous Materials, 2017, 242: 59–62

  92. 92.

    Huang Y, Wang K, Dong D, Li D, Hill M R, Hill A J, Wang H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175

  93. 93.

    Mather P, Pilato J. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30

  94. 94.

    Khajavi S, Kapteijn F, Jansen J C. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1–2): 63–72

  95. 95.

    Weitkamp J, Schumacher R. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360

  96. 96.

    Breck D. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784

  97. 97.

    Scardi P, Leoni M, Beyerlein K R. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933

  98. 98.

    Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069

Download references


The authors gratefully acknowledge financial support from the Bavarian Research Foundation (BFS), from the State of Bavaria in frame of the projekt BTHA-FV-17 and the support of the Cluster of Excellence “Engineering of Advanced Materials” at FAU Erlangen-Nürnberg founded by the DFG. We thank Professor Michael Tsapatsis and his co-workers, University of Minnesota, for their kind support of the TEM measurements. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Author information

Correspondence to Alexandra Inayat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reiprich, B., Weissenberger, T., Schwieger, W. et al. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Front. Chem. Sci. Eng. (2020) doi:10.1007/s11705-019-1883-3

Download citation


  • FAU
  • hierarchical zeolite
  • layer-like morphology