Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions

  • Peng Luo
  • Yejun Guan
  • Hao XuEmail author
  • Mingyuan He
  • Peng WuEmail author
Research Article


Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were in situ reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this in situ recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.


core/shell ZSM-5 in situ recrystallization mesopore ketalation and acetalization reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from Ministry of Science and Technology of China (Grant No. 2016YFA0202804) and the National Natural Science Foundation of China (Grant Nos. 21872052, 21533002, 21571128 and 21603075).

Supplementary material

11705_2019_1878_MOESM1_ESM.pdf (264 kb)
Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions


  1. 1.
    Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144CrossRefGoogle Scholar
  2. 2.
    Wei Z H, Xia T F, Liu M H, Cao Q S, Xu Y R, Zhu K K, Zhu X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460CrossRefGoogle Scholar
  3. 3.
    Feng C, Khulbe K, Matsuura T, Farnood R, Ismail A, Membr J. Recent progress in zeolite/zeotype membranes. Journal of Membrane Science and Research, 2015, 1(2): 49–72Google Scholar
  4. 4.
    Weckhuysen B M, Yu J H. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44(20): 7022–7024PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Cnudde P, De Wispelaere K, Vanduyfhuys L, Demuynck R, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catalysis, 2018, 8(10): 9579–9595PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tarach K A, Pyra K, Siles S, Cabrera M, Marek K G. Operando study reveals the superior cracking activity and stability of hierarchical ZSM-5 catalyst for the cracking of low-density polyethylene. ACS Sustainable Chemistry & Engineering, 2018, 12(3): 633–638Google Scholar
  8. 8.
    Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tago T, Konno H, Nakasaka Y, Masuda T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163CrossRefGoogle Scholar
  10. 10.
    Wang D R, Zhang L, Chen L, Wu H H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521CrossRefGoogle Scholar
  11. 11.
    Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789CrossRefGoogle Scholar
  12. 12.
    Zhu J, Meng X J, Xiao F S. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248CrossRefGoogle Scholar
  13. 13.
    Möller K, Bein T. Mesoporosity—a new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117CrossRefGoogle Scholar
  15. 15.
    Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube template growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–1418CrossRefGoogle Scholar
  16. 16.
    Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 118(19): 3162–3165CrossRefGoogle Scholar
  18. 18.
    Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporousity. Nature Materials, 2006, 5(3): 718–723PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen H Y, Yang M F, Shang W J, Tong Y, Liu B Y, Han X L, Zhang J B, Hao Q Q, Sun M, Ma X X. Organosilane Surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966CrossRefGoogle Scholar
  20. 20.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(8288): 246–249PubMedCrossRefGoogle Scholar
  21. 21.
    Donk S V, Janssen A H, Bitter J H, Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319CrossRefGoogle Scholar
  22. 22.
    Song B D, Li Y Q, Cao G, Sun Z H, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574CrossRefGoogle Scholar
  23. 23.
    Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(14): 82–88CrossRefGoogle Scholar
  24. 24.
    Verboekend D, Ramirez J P. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147Google Scholar
  25. 25.
    Ramírez J P, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(23): 3972–3979CrossRefGoogle Scholar
  26. 26.
    Han Y, Pitukmanorom P, Zhao L, Ying J Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7(3): 326–332PubMedCrossRefGoogle Scholar
  27. 27.
    Wang D R, Xu L, Wu P. Hierarchical, core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545CrossRefGoogle Scholar
  28. 28.
    Peng P, Sun S Z, Liu Y X, Liu X M, Mintova S, Yan Z F. Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529(9): 283–293PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zuo Y, Song W, Dai C, He Y, Wang M, Wang X, Guo X. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Applied Catalysis A, General, 2013, 453(32): 272–279CrossRefGoogle Scholar
  30. 30.
    Li C G, Lu Y Q, Wu H H, Wu P, He M Y. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chemical Communications, 2015, 51(80): 14905–14908PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Xue T, Wang Y M, He M Y. Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sciences, 2012, 14(4): 409–418CrossRefGoogle Scholar
  32. 32.
    Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482–500CrossRefGoogle Scholar
  33. 33.
    Zecchina A, Bordiga S, Spoto G, Marchese L, Petrini G, Leofanti G, Padoan M. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. Journal of Physical Chemistry, 1992, 96(12): 4991–4997Google Scholar
  34. 34.
    Kustov L M, Kazansky V B, Beran S, Kubelkova L, Jiru P. Adsorption of carbon monoxide on ZSM-5 zeolites. Infrared spectroscopic study and quantum-chemical calculations. Journal of Physical Chemistry, 1987, 91(20): 5247–5251Google Scholar
  35. 35.
    Wu P, Komatsu T, Yashima T I R. IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. Journal of Physical Chemistry, 1995, 99(27): 10923–10931CrossRefGoogle Scholar
  36. 36.
    Zecchina A, Bordiga S, Spoto G, Scarano D, Petrini G, Leofanti G, Padovan M, Arean C O. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2959–2967CrossRefGoogle Scholar
  37. 37.
    Parry P E. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963, 2(5): 371–379Google Scholar
  38. 38.
    Franke M E, Simon U. Solvate-supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2004, 5(4): 465–472CrossRefGoogle Scholar
  39. 39.
    Suzuki K, Aovagi Y, Katada N, Choi M, Ryoo R, Niwa M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Catalysis Today, 2008, 132(1–4): 38–45CrossRefGoogle Scholar
  40. 40.
    Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S A. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chemistry of Materials, 2014, 26(24): 7183–7188CrossRefGoogle Scholar
  41. 41.
    Jung J W, Jo C B, Mota F M, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A, General, 2015, 492(8): 68–75CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations