Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure

  • 33 Accesses

Abstract

Post-synthetic functionalization or modification has been regarded as a promising strategy to treat surfaces of adsorbents for their applications in targeted adsorption and separation processes. In this work, a novel microporous adsorbent for carbon capturing was developed via functionalization of zeolitic imidazolate frame-work-91 (ZIF-91) to generate a hard/hard (metal-oxygen) structure named as lithium-modified ZIF-91 (ZIF-91-OLi compound). To this purpose, the ZIF-91 compound as an intermediate product was achieved by reduction of ZIF-90 in the presence of NaBH4 as a good reducing agent. Afterwards, acidic hydrogen atoms in the hydroxyl groups of ZIF-91 were exchanged with lithium cations via reaction of n-BuLi compound as an organo lithium agent through an appropriate procedure. In particular, the as-synthesized ZIF-91-OLi operated as an excellent electron-rich center for CO2 adsorption through trapping the positive carbon centers in the CO2 molecule. DFT calculations revealed that the presence of lithium over the surface of ZIF-91-OLi adsorbent plays an effective role in double enhancement of CO2 storage via creating a strong negative charge center at the oxygen atoms of the imidazolate linker as a result of the lithium/hydrogen exchange system. Finally, the selectivity of CO2/N2 was investigated at different temperatures, revealing the ZIF-91-OLi as a selective adsorbent for industrial application.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Rosskopf D. Sodium-hydrogen exchange and platelet function. Journal of Thrombosis and Thrombolysis, 1999, 8(1): 15–23

  2. 2.

    Altstetter C J. Metal-oxygen systems. Bulletin of Alloy Phase Diagrams, 1984, 5(6): 543–553

  3. 3.

    Nandan D, Gupta A R. Lithium/hydrogen, sodium/hydrogen, and potassium/hydrogen ion exchange equilibria on cross-linked dowex 58w resins in anhydrous methanol. Journal of Physical Chemistry, 1975, 79(2): 180–185

  4. 4.

    Gende O A, Cingolani H E. Comparison between sodium-hydrogen ion and lithium-hydrogen ion exchange in human platelets. Biochimica et Biophysica Acta, 1993, 1152(2): 219–224

  5. 5.

    Lazdunski M, Frelin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. Journal of Molecular and Cellular Cardiology, 1985, 17(11): 1029–1042

  6. 6.

    Wang L, Zhang Y, Liu Z, Guo L, Peng Z. Understanding oxygen electrochemistry in aprotic Li-O2 batteries. Green Energy & Environment, 2017, 2(3): 186–203

  7. 7.

    Sun D, Shen Y, Zhang W, Yu L, Yi Z, Yin W, Wang D, Huang Y, Wang J, Wang D, Goodenough J B. A solution-phase bifunctional catalyst for lithium-oxygen batteries. Journal of the American Chemical Society, 2014, 136(25): 8941–8946

  8. 8.

    Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G. The lithium-oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition, 2011, 50(37): 8609–8613

  9. 9.

    Urgaonkar S, Verkade J G. Palladium/proazaphosphatrane-cata-lyzed amination of arylhalides possessing a phenol, alcohol, acetanilide, amide or an enolizable ketone functional group: Efficacy of lithiumbis(trimethylsilyl)amide as the base. Advanced Synthesis & Catalysis, 2004, 346(6): 611–616

  10. 10.

    Li Y, Paddon-Row M N, Houk K N. Transition structures for the aldol reactions of anionic, lithium, andboron enolates. Journal of Organic Chemistry, 1990, 55(2): 481–493

  11. 11.

    Schlessinger R H, Iwanowicz E J, Springer J P. An enantio- and erythro-selective lithium enolate derived from a vinylogous urethane: Its application as a C4 synthon to the virginiamycin M2 problem. Journal of Organic Chemistry, 1986, 51(15): 3070–3073

  12. 12.

    Pratt L M, Streitwieser A. Computational study of lithium enolate mixed aggregates. Journal of Organic Chemistry, 2003, 68(7): 2830–2838

  13. 13.

    Itoh Y, Mikami K. Radical trifluoromethylation of titanium ate enolate. Organic Letters, 2005, 7(4): 649–651

  14. 14.

    Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

  15. 15.

    Niknam Shahrak M, Niknam Shahrak M O, Shahsavand A, Khazeni N, Wu X, Deng S. Gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption. Chinese Journal of Chemical Engineering, 2017, 25(5): 595–601

  16. 16.

    Niknam Shahrak M, Ghahramaninezhad M, Eydifarash M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr (VI) ions from aqueous solution. Environmental Science and Pollution Research International, 2017, 24(10): 9624–9634

  17. 17.

    Ghahramaninezhad M, Soleimani B, Niknam Shahrak M. A simple and novel protocol for Li-trapping with a POM/MOF nano-composite as a new adsorbent for CO2 uptake. New Journal of Chemistry, 2018, 42(6): 4639–4645

  18. 18.

    Chen B, Yang Z, Zhu Y, Xia Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(40): 16811–16831

  19. 19.

    Wu X, Niknam Shahrak M, Yuan B, Deng S. Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous and Mesoporous Materials, 2014, 190: 189–196

  20. 20.

    Ayati A, Shahrak M N, Tanhaei B, Sillanpää M. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere, 2016, 160: 30–44

  21. 21.

    Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: Fundamentals and applications. Chemical Society Reviews, 2014, 43(16): 5594–5617

  22. 22.

    Mohajer F, Niknam Shahrak M. Simulation study on CO2 diffusion and adsorption in zeolitic imidazolate framework-8 and-90: influence of different functional groups. Heat and Mass Transfer Journal, 2019, 55(7): 2017–2023

  23. 23.

    Morris W, Doonan C J, Furukawa H, Banerjee R, Yaghi O M. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2008, 130(38): 12626–12627

  24. 24.

    Liu C, Liu Q, Huang A. Superhydrophobic zeolitic imidazolate framework ZIF-90 with high steam stability for efficient recover of bioalcohols. Chemical Communications, 2016, 52(16): 3400–3402

  25. 25.

    Huang A, Liu Q, Wang N, Caro J. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous and Mesoporous Materials, 2014, 192: 18–22

  26. 26.

    Tharun J, Bhin K M, Roshan R, Kim D W, Kathalikkattil A C, Babu R, Ahn H Y, Won Y S, Park D W. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 2016, 18(8): 2479–2487

  27. 27.

    Huang A, Caro J. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angewandte Chemie International Edition, 2011, 50(21): 4979–4982

  28. 28.

    Yu L Q, Yang X P. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chemical Communications, 2013, 49(21): 2142–2148

  29. 29.

    Bhattacharjee S, Lee Y R, Ahn W S. Post-synthesis functionaliza-tion of a zeolitic imidazolate structure ZIF-90: A study on removal of Hg(II) from water and epoxidation of alkenes. CrystEngComm, 2015, 17(12): 2575–2582

  30. 30.

    Jones C G, Stavila V, Conroy M A, Feng P, Slaughter B V, Ashley C E, Allendorf M D. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2016, 8(12): 7623–7630

  31. 31.

    Wang E, Shen J, Wang Y, Tang S, Emami S, Reaney M J T. Production of biodiesel with lithium glyceroxide. Fuel, 2015, 160: 621–628

  32. 32.

    Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 2011, 112(2): 724–781

  33. 33.

    Do D D. Adsorption Analysis: Equilibria and Kinetics. 2nd ed. London: Imperial College Press, 1999, 13–18

  34. 34.

    Bai L, Tu B, Qi Y, Gao Q, Liu D, Liu Z, Zhao L, Li Q, Zhao Y. Enhanced performance in gas adsorption and Li ion battery by docking Li+ in crown ether-based metal organic framework. Chemical Communications, 2016, 52(14): 3003–3006

  35. 35.

    Lim D W, Chyun S A, Suh M P. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites. Angewandte Chemie International Edition, 2014, 53(30): 7819–7824

  36. 36.

    Zhou W, Wu H, Hartman M R, Yildirim T. Hydrogen and methane adsorption in metal-organic frameworks: A high-pressure volumetric study. Journal of Physical Chemistry C, 2007, 111(44): 16131–16137

  37. 37.

    Amrouche H, Aguado S, Pérez- Pellitero J, Chizallet C, Siperstein F, Farrusseng D, Bats D, Nieto-Draghi C. Experimental and computational study of functionality impact on sodalite-zeolitic imidazolate frameworks for CO2 separation. Journal of Physical Chemistry C, 2011, 115(33): 16425–16432

  38. 38.

    Jensen J H, Kromann J C. The molecule calculator: A web application for fast quantum mechanics-based estimation of molecular properties. Journal of Chemical Education, 2013, 90(8): 1093–1095

  39. 39.

    Planas N, Dzubak A L, Poloni R, Lin L C, McManus A, McDonald T M, Neaton J B, Long J R, Smit B, Gagliardi L. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. Journal of the American Chemical Society, 2013, 135(20): 7402–7405

  40. 40.

    Lan J, Cao D, Wang W, Smit B. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano, 2010, 4(7): 4225–4237

  41. 41.

    Liu D, Zheng C, Yang Q, Zhong C. Understanding the adsorption and diffusion of carbon dioxide in zeoliticimidazolate frameworks: A molecular simulation study. Journal of Physical Chemistry C, 2009, 113(12): 5004–5009

  42. 42.

    Pérez- Pellitero J, Amrouche H, Siperstein F R, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(5): 1560–1571

  43. 43.

    Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453(7192): 207–211

Download references

Acknowledgments

Supplementary material is available in the online version of this article at and is accessible for authorized users.

Author information

Correspondence to Mahdi Niknam Shahrak.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghahramaninezhad, M., Mohajer, F. & Niknam Shahrak, M. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure. Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-019-1873-5

Download citation

Keywords

  • hard/hard structure
  • acidic hydrogen
  • ZIF-91
  • carbon capture
  • ZIF-91-OLi