Advertisement

A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added seawater

  • Yingying Zhao
  • Mengfan Wu
  • Zhiyong Ji
  • Yuanyuan Wang
  • Jiale Li
  • Jianlu Liu
  • Junsheng YuanEmail author
Research Article
  • 2 Downloads

Abstract

The desulfurization by seawater and mineral carbonation have been paid more and more attention. In this study, the feasibility of magnesia and seawater for the integrated disposal of SO2 and CO2 in the simulated flue gas was investigated. The process was conducted by adding MgO in seawater to reinforce the absorption of SO2 and facilitate the mineralization of CO2 by calcium ions. The influences of various factors, including digestion time of magnesia, reaction temperature, and salinity were also investigated. The results show that the reaction temperature can effectively improve the carbonation reaction. After combing SO2 removal process with mineral carbonation, Ca2+ removal rate has a certain degree of decrease. The best carbonation condition is to use 1.5 times artificial seawater (the concentrations of reagents are 1.5 times of seawater) at 80°C and without digestion of magnesia. The desulfurization rate is close to 100% under any condition investigated, indicating that the seawater has a sufficient desulfurization capacity with adding magnesia. This work has demonstrated that a combination of the absorption of SO2 with the absorption and mineralization of CO2 is feasible.

Keywords

mineral carbonation wet SO2 disposal sea-water desulfurization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work is supported by Science and technology project of Hebei Province (No. 17273101D), Chinese Postdoctoral Science Foundation (No. 2017M611142), National Key Research and Development Program (No. 2016YFB0600500), the National Natural Science Foundation of China (Grant No. 21306037), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT14R14).

References

  1. 1.
    World Meteorological Organization: The state of greenhouse gases in the atmosphere based on global observations through 2016. WMO Greenhouse Gas Bulletin (GHG Bulletin), 2017-10-30Google Scholar
  2. 2.
    UN News Centre. Carbon dioxide levels surge to new high in 2016. UN weather agency reports, 2017-10-30Google Scholar
  3. 3.
    Aslam A, Thomas-Hall S R, Mughal T A, Schenk P M. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresource Technology, 2017, 233: 271–283PubMedCrossRefGoogle Scholar
  4. 4.
    Yadav G, Karemore A, Dash S K, Sen R. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology, 2015, 191: 399–406PubMedCrossRefGoogle Scholar
  5. 5.
    Liémans I, Thomas D. Simultaneous NOx and SOx Reduction from oxyfuel exhaust gases using acidic solutions containing hydrogen peroxide. Energy Procedia, 2013, 37: 1348–1356CrossRefGoogle Scholar
  6. 6.
    Mumford K A, Yue W, Smith K H, Stevens G W. Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141CrossRefGoogle Scholar
  7. 7.
    Metz B, Davidson O, Coninck H C, Loos M, Meyer L A. Carbon Dioxide Capture and Storage. New York: Cambridge University Press, 2005, 5: 197–265Google Scholar
  8. 8.
    Gaus I. Role and impact of CO2—rock interactions during CO2, storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 2010, 4(1): 73–89CrossRefGoogle Scholar
  9. 9.
    Baines S J, Worden R H. The long-term fate of CO2 in the subsurface: Natural analogues for CO2 storage. Geological Society of London, Special Publications, 2004, 233(1): 59–85CrossRefGoogle Scholar
  10. 10.
    Gunter W D, Perkins E H, Hutcheon I. Aquifer disposal of acid gases: Modelling of water—rock reactions for trapping of acid wastes. Applied Geochemistry, 2000, 15(8): 1085–1095CrossRefGoogle Scholar
  11. 11.
    Xu R, Li R, Ma J, He D, Jiang P. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage. Accounts of Chemical Research, 2017, 50(9): 2056–2066PubMedCrossRefGoogle Scholar
  12. 12.
    Park S, Lee M G, Park J. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods. Energy, 2013, 59(11): 737–742CrossRefGoogle Scholar
  13. 13.
    Liang Y, Tsuji S, Jia J, Tsuji T, Matsuoka T. Modeling CO2-water-mineral wettability and mineralization for carbon geosequestration. Accounts of Chemical Research, 2017, 50(7): 1530–1540PubMedCrossRefGoogle Scholar
  14. 14.
    Teng H, Masutani S, Kinoshita C, Nihous G. Solubility of CO2 in the ocean and its effect on CO2 dissolution. Fuel and Energy Abstracts, 1996, 37(4): 308Google Scholar
  15. 15.
    Weiss R F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 1974, 2(3): 203–215CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Yuan J, Zhang J, Xie L, Ji Z, Su M, Chen J. A different approach for seawater decalcification pretreatment using carbon dioxide as precipitator. Desalination, 2013, 322(4): 151–158CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Cao H, Xie Y, Yuan J, Ji Z, Yan Z. Mechanism studies of a CO2 participant softening pretreatment process for seawater desalination. Desalination, 2016, 393: 166–173CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Zhang Y, Liu J, Gao J, Ji Z, Guo X, Liu J, Yuan J. Trash to treasure: Seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of soda ash plant as alkali source. Desalination, 2017, 407: 85–92CrossRefGoogle Scholar
  19. 19.
    Gao J, Wang S, Zhao B, Qi G, Chen C. Pilot-scale experimental study on the CO2 capture process with existing of SO2: Degradation, reaction rate, and mass transfer. Energy & Fuels, 2011, 25(12): 5802–5809CrossRefGoogle Scholar
  20. 20.
    Karousos D S, Labropoulos A I, Sapalidis A, Kanellopoulos N K, Iliev B, Schubert T J S, Romanos G E. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790CrossRefGoogle Scholar
  21. 21.
    Li K, Yu H, Qi G, Feron P, Tade M, Yu J, Wang S. Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process. Applied Energy, 2015, 148: 66–77CrossRefGoogle Scholar
  22. 22.
    Qi G, Wang S. Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3. Applied Energy, 2017, 191: 549–558CrossRefGoogle Scholar
  23. 23.
    Manovic V, Anthony E J, Loncarevic D. SO2 Retention by CaO-based sorbent spent in CO2 looping cycles. Industrial & Engineering Chemistry Research, 2009, 48(14): 6627–6632CrossRefGoogle Scholar
  24. 24.
    Li Y, Liu C, Sun R, Liu H, Wu S, Lu C. Sequential SO2/CO2 capture of calcium-based solid waste from the paper industry in the calcium looping process. Industrial & Engineering Chemistry Research, 2012, 51(49): 16042–16048CrossRefGoogle Scholar
  25. 25.
    Wappel D, Joswig S, Khan A A, Smith K H, Kentish S E, Shallcross D C, Stevens G W. The solubility of sulfur dioxide and carbon dioxide in an aqueous solution of potassium carbonate. International Journal of Greenhouse Gas Control, 2011, 5(6): 1454–1459CrossRefGoogle Scholar
  26. 26.
    Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen J J, van Loosdrecht M C M. Rate-based modelling of SO2 absorption into aqueous NaHCO3/Na2CO3 solutions accompanied by the desorption of CO2. Chemical Engineering Science, 2003, 58(16): 3589–3600CrossRefGoogle Scholar
  27. 27.
    Vidal B F, Ollero P, Gutiérrez Ortiz F J, Villanueva A. Catalytic seawater flue gas desulfurization process: An experimental pilot plant study. Environmental Science & Technology, 2007, 41(20): 7114–7119CrossRefGoogle Scholar
  28. 28.
    Al-Anezi K, Hilal N. Effect of carbon dioxide in seawater on desalination: A comprehensive review. Separation and Purification Reviews, 2006, 35(3): 223–247CrossRefGoogle Scholar
  29. 29.
    Smithson G L, Bakhshi N N. Kinetics and mechanism of carbonation of magnesium oxide slurries. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(1): 99–106CrossRefGoogle Scholar
  30. 30.
    Liu Q, Maroto-Valer M M. Studies of pH buffer systems to promote carbonate formation for CO2 sequestration in brines. Fuel Processing Technology, 2012, 98(16): 6–13CrossRefGoogle Scholar
  31. 31.
    Swanson E J, Fricker K J, Sun M, Park A H. Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage. Physical Chemistry Chemical Physics, 2014, 16(42): 23440–23450PubMedCrossRefGoogle Scholar
  32. 32.
    Hosseini T, Daneshpayeh M, Selomulya C, Haque N, Zhang L. Chemical kinetic modeling and parameter sensitivity analysis for the carbonation of Ca2+ and Mg2+ under ambient conditions. Hydrometallurgy, 2017, 167: 141–152CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Wu M, Guo X, Zhang Y, Ji Z, Wang J, Liu J, Liu J, Wang Z, Chi Q, Yuan J. Thorough conversion of CO2 through two-step accelerated mineral carbonation in the MgCl2-CaCl2-H2O system. Separation and Purification Technology, 2019, 210: 343–354CrossRefGoogle Scholar
  34. 34.
    Shen Z, Chen X, Tong M, Guo S, Ni M, Lu J. Studies on magnesium-based wet flue gas desulfurization process with oxidation inhibition of the byproduct. Fuel, 2013, 105(1): 578–584CrossRefGoogle Scholar
  35. 35.
    del Valle-Zermeño R, Formosa J, Aparicio J A, Chimenos J M. Reutilization of low-grade magnesium oxides for flue gas desulfurization during calcination of natural magnesite: A closed-loop process. Chemical Engineering Journal, 2014, 254(7): 63–72CrossRefGoogle Scholar
  36. 36.
    Wang F, Dreisinger D, Jarvis M, Hitchins T. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Minerals Engineering, 2019, 131: 185–197CrossRefGoogle Scholar
  37. 37.
    Bobicki E, Liu Q X, Xu Z H, Zeng H B. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 2012, 38(2): 302–320CrossRefGoogle Scholar
  38. 38.
    Aloisi G. A pronounced fall in the CaCO3 saturation state and the total alkalinity of the surface ocean during the Mid Mesozoic. Chemical Geology, 2018, 487: 39–53CrossRefGoogle Scholar
  39. 39.
    Al-Yaseri A Z, Lebedev M, Barifcani A, Iglauer S. Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity. Journal of Chemical Thermodynamics, 2016, 93: 416–423CrossRefGoogle Scholar
  40. 40.
    Teng H, Masutani S M, Kinoshita C M, Nihous G C. Solubility of CO2 in the ocean and its effect on CO2 dissolution. Energy Conversion and Management, 1996, 37(6–8): 1029–1038CrossRefGoogle Scholar
  41. 41.
    Weiss R F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 1974, 2(3): 203–215CrossRefGoogle Scholar
  42. 42.
    Feely R, Sabine C, Lee K, Berelson W, Kleypas J, Fabry V, Millero F. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305(5682): 362–366PubMedCrossRefGoogle Scholar
  43. 43.
    Park S, Lee M G, Park J. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods. Energy, 2013, 59(11): 737–742CrossRefGoogle Scholar
  44. 44.
    Yang J, Yu X H, Yan J Y, Tu S T, Dahlquist E. Effects of SO2 on CO2 capture using a hollow fiber membrane contactor. Applied Energy, 2013, 112: 755–764CrossRefGoogle Scholar
  45. 45.
    Li X, Zhang L, Zheng Y, Zheng C. Effect of SO2 on CO2 Absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate. Industrial & Engineering Chemistry Research, 2015, 54(34): 8569–8578CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yingying Zhao
    • 1
    • 2
    • 4
  • Mengfan Wu
    • 1
  • Zhiyong Ji
    • 1
    • 2
  • Yuanyuan Wang
    • 1
  • Jiale Li
    • 1
  • Jianlu Liu
    • 4
  • Junsheng Yuan
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina
  2. 2.Hebei Collaborative Innovation Center of Modern Marine Chemical TechnologyTianjinChina
  3. 3.Quanzhou Normal UniversityFujianChina
  4. 4.Shandong Haihua Group Co., Ltd.ShandongChina

Personalised recommendations