Pilot plants of membrane technology in industry: Challenges and key learnings

  • Colin A. ScholesEmail author
Review Article


Membrane technology holds great potential in gas separation applications, especially carbon dioxide capture from industrial processes. To achieve this potential, the outputs from global research endeavours into membrane technologies must be trialled in industrial processes, which requires membrane-based pilot plants. These pilot plants are critical to the commercialization of membrane technology, be it as gas separation membranes or membrane gas-solvent contactors, as failure at the pilot plant level may delay the development of the technology for decades. Here, the author reports on his experience of operating membrane-based pilot plants for gas separation and contactor configurations as part of three industrial carbon capture initiatives: the Mulgrave project, H3 project and Vales Point project. Specifically, the challenges of developing and operating membrane pilot plants are presented, as well as the key learnings on how to successfully manage membrane pilot plants to achieve desired performance outcomes. The purpose is to assist membrane technologists in the carbon capture field to achieve successful outcomes for their technology innovations.


membrane gas separation membrane contactors carbon capture pilot plants key learnings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks the CO2CRC Ltd., especially Dr. Abdul Qader and Mr. Barry Hooper; Process Group (now Suez Oil & Gas Systems), especially Dr. Trina Dreher; Pilot Plant Management & Services Pty Ltd., especially Mr. Kurt Luttin; Commonwealth Scientific and Industrial Research Organisation (CSIRO), especially Mr. Dan Maher and Mr. Phillip Green; Furnace Engineering; HRL Technology Pty Ltd.; Engie (formerly GDF Suez); Delta Electricity; the Victorian Government’s Energy Technology Innovation Strategy (ETIS) and Victoria Fellowship; as well as Coal Innovation New South Wales.


  1. 1.
    Baker R W. Advanced Membrane Technology and Applications. Li N N, Fane A G, Ho W S W, Boylewoo T M, eds. New Jersy: John Wiley & Sons, 2008, 559–580Google Scholar
  2. 2.
    Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress & Sustainable Energy, 2004, 22(1): 46–56Google Scholar
  3. 3.
    Matsuura T. Progress in membrane science and technology for seawater desalination—a review. Desalination, 2001, 134(1–3): 47–54CrossRefGoogle Scholar
  4. 4.
    Hilal N, Al-Zoubi H, Darwish N A, Mohammad A W, Abu Arabi M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308CrossRefGoogle Scholar
  5. 5.
    Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254CrossRefGoogle Scholar
  6. 6.
    Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 2010, 71(2): 137–143CrossRefGoogle Scholar
  7. 7.
    Padaki M, Surya Murali R, Abdullah M S, Misdan N, Moslehyani A, Kassim M A, Hilal N, Ismail A F. Membrane technology enhancement in oil-water separation. A review. Desalination, 2015, 357:197–207CrossRefGoogle Scholar
  8. 8.
    Sridhar S, Smitha B, Aminabhavi T M. Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Separation and Purification Reviews, 2007, 36(2): 113–174CrossRefGoogle Scholar
  9. 9.
    Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121CrossRefGoogle Scholar
  10. 10.
    Scholes C A, Stevens G W, Kentish S E. Membrane gas separation applications in natural gas processing. Fuel, 2012, 96(1): 15–28CrossRefGoogle Scholar
  11. 11.
    Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663CrossRefGoogle Scholar
  12. 12.
    Klaassen R, Jansen A E. The membrane contactor: Environmental applications and possibilities. Environmental Progress, 2001, 20(1): 37–43CrossRefGoogle Scholar
  13. 13.
    Scholes C A, Smith K H, Kentish S E, Stevens G W. CO2 capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755CrossRefGoogle Scholar
  14. 14.
    Scholes C A, Ho M T, Wiley D E, Stevens G W, Kentish S E. Cost competitive membrane—cryogenic post-combustion carbon capture. International Journal of Greenhouse Gas Control, 2013, 17: 341–348CrossRefGoogle Scholar
  15. 15.
    Merkel T C, Lin X, Wei X, Baker R W. Power plant postcombustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1–2): 126–139CrossRefGoogle Scholar
  16. 16.
    Klaassen R, Feron P H M, Jansen A E. Membrane contactors in industrial applications. Chemical Engineering Research & Design, 2005, 83(3): 234–246CrossRefGoogle Scholar
  17. 17.
    Falk-Pedersen O, Gronvold M S, Nokleby P, Bjerve Y, Svendsen H F. CO2 capture with membrane contactors. International Journal of Green Energy, 2005, 2(2): 157–165CrossRefGoogle Scholar
  18. 18.
    Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49CrossRefGoogle Scholar
  19. 19.
    Rezakazemi M, Amooghin A E, Montazer-Rahmati M M, Ismail A F, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861CrossRefGoogle Scholar
  20. 20.
    Hägg M B, Lindbrathen A, He X, Nodeland S G, Cantero T. Pilot demonstration reporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia, 2017, 114: 6150–6165CrossRefGoogle Scholar
  21. 21.
    Sandru M, Kim T J, Capala W, Huijbers M, Hagg M B. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480CrossRefGoogle Scholar
  22. 22.
    Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64CrossRefGoogle Scholar
  23. 23.
    Qader A. Carbon capture and storage demonstration by CO2CRC. In: Carbon Management. Houston, TX: AIChE Academy, 2017, 3.15–3.45Google Scholar
  24. 24.
    White L S, Wei X, Pande S, Wu T, Merkel T C. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. Journal of Membrane Science, 2015, 496(1): 48–57CrossRefGoogle Scholar
  25. 25.
    Falk-Pedersen O, Bjerve Y, Glittum G, Ronning S. Separation of carbon dioxide from offshore gas turbine exhaust. Energy Conversion and Management, 1995, 36(6–9): 393–396CrossRefGoogle Scholar
  26. 26.
    Falk-Pedersen O, Dannstrom H. Separation of carbon dioxide from offshore gas turbine exhaust. Energy Conversion and Management, 1997, 38: S81–S86CrossRefGoogle Scholar
  27. 27.
    Comite A, Costa C, Demartini M, Di Felice R, Oliva M. Exploring CO2 capture from pressurized industrial gaseous effluents in membrane contactor-based pilot plant. International Journal of Greenhouse Gas Control, 2017, 67: 60–70CrossRefGoogle Scholar
  28. 28.
    Li S, Rocha D J, Zhou S J, Meyer H S, Bikson B, Ding Y. Postcombustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors. Journal of Membrane Science, 2013, 430: 79–86CrossRefGoogle Scholar
  29. 29.
    Scholes C A, Bacus J, Chen G Q, Tao W X, Li G, Qader A, Stevens G W, Kentish S E. Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. Journal of Membrane Science, 2012, 389: 470–477CrossRefGoogle Scholar
  30. 30.
    Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO2 absorption from syngas. Chemical Engineering Journal, 2012, 195–196: 188–197CrossRefGoogle Scholar
  31. 31.
    Scholes C A, Qader A, Stevens G W, Kentish S E. Membrane gassolvent contactor trials of CO2 absorption from flue gas. Separation Science and Technology, 2014, 49(16): 2449–2458CrossRefGoogle Scholar
  32. 32.
    Scholes C A, Qader A, Stevens G W, Kentish S E. Membrane pilot plant trials of CO2 separation from flue gas. Greenhouse Gases. Science and Technology, 2015, 5(3): 1–10Google Scholar
  33. 33.
    Qader A, Hooper B, Stevens G. Demonstrating carbon capture. Chemical Engineering (Albany, N.Y.), 2009, 11: 30–31 (TCE)Google Scholar
  34. 34.
    Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44CrossRefGoogle Scholar
  35. 35.
    Scholes C A, Motuzas J, Smart S, Kentish S E. Membrane adhesives. Industrial & Engineering Chemistry Research, 2014, 53(23): 9523–9533CrossRefGoogle Scholar
  36. 36.
    deMontigny D, Tontiwachwuthikul P, Chakma A. Comparing the absorption performance of packed columns and membrane contactors. Industrial & Engineering Chemistry Research, 2005, 44(15): 5726–5732CrossRefGoogle Scholar
  37. 37.
    Alharthi K, Christianto Y, Aguiar A, Stickland A D, Stevens G W, Kentish S E. Impact of fly ash on the membrane performance in postcombustion carbon capture applications. Industrial & Engineering Chemistry Research, 2016, 55(16): 4711–4719CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Peter Cook Centre for Carbon Capture and Storage Research, Department of Chemical EngineeringThe University of MelbourneMelbourneAustralia

Personalised recommendations