Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity

  • 15 Accesses

Abstract

Titanosilicate pillared MFI zeolite nanosheets were successfully synthesized by infiltrating the mixed tetraethyl orthosilicate (TEOS)/tetrabutyl orthotitanate (TBOT) solvent into the gallery space between adjacent MFI zeolite layers. The obtained zeolite catalysts were characterized using powder X-ray diffraction, N2 adsorption/desorption isotherms, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy techniques. The H2O2 oxidation of dibenzothiophene (DBT) was used to evaluate the catalytic performance of the obtained titanosilicate pillared MFI zeolites. The conversion of DBT and selectivity of dibenzothiophene sulfone (DBTS) were most affected by the textural properties of the zeolites. This was attributed to the DBT and DBTS molecules being larger than micropores of the MFI zeolites. The conversion of DBT and yield of DBTS could be systematically tailored by tuning the molar ratio of the TEOS/TBOT solvent. These results implied that a balance between the meso- and microporosity of zeolites and tetrahedrally coordinated Ti (IV) active sites of titanosilicate pillars can be achieved for the preparation of desired catalysts during the oxidation of bulk S compounds.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bhutto A W, Abro R, Gao S, Abbas T, Chen X, Yu G. Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 84–97

  2. 2.

    Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263

  3. 3.

    Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 2003, 82(6): 607–631

  4. 4.

    Kowsari E. Ionic Liquids—New Aspects for the Future. Rijeka: InTech, 2013, 11–20

  5. 5.

    García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, Murrieta F, Navarrete J, Jiménez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Applied Catalysis A, General, 2006, 305(1): 15–20

  6. 6.

    Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 2003, 41(1): 207–238

  7. 7.

    Du Q, Guo Y, Duan H, Li H, Chen Y, Liu H. Synthesis of hierarchical TS-1 zeolite via a novel three-step crystallization method and its excellent catalytic performance in oxidative desulfurization. Fuel, 2017, 188: 232–238

  8. 8.

    De Filippis P, Scarsella M, Verdone N. Oxidative desulfurization I: Peroxyformic acid oxidation of benzothiophene and dibenzothiophene. Industrial & Engineering Chemistry Research, 2010, 49(10): 4594–4600

  9. 9.

    Song H, Li G, Wang X. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Microporous and Mesoporous Materials, 2009, 120(3): 346–350

  10. 10.

    Jiang B, Sun Z, Zhang L, Sun Y, Zhang H, Yang H. Synthesis of a hypercrosslinked, ionic, mesoporous polymer monolith and its application in deep oxidative desulfurization. Journal of Applied Polymer Science, 2018, 135(21): 46280

  11. 11.

    Wang X, Li G, Wang W, Jin C, Chen Y. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2): 494–502

  12. 12.

    Chica A, Corma A, Dómine M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. Journal of Catalysis, 2006, 242(2): 299–308

  13. 13.

    Lv Q, Li G, Sun H. Synthesis of hierarchical TS-1 with convenient separation and the application for the oxidative desulfurization of bulky and small reactants. Fuel, 2014, 130: 70–75

  14. 14.

    Wang W, Li G, Liu L, Chen Y. Synthesis and catalytic performance of hierarchical TS-1 directly using agricultural products sucrose as meso/macropores template. Microporous and Mesoporous Materials, 2013, 179: 165–171

  15. 15.

    Jose N, Sengupta S, Basu J K. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel, 2011, 90(2): 626–632

  16. 16.

    Napanang T, Sooknoi T. Oxidative extraction of thiophene from n-dodecane over TS-1 in continuous process: A model for non-severe sulfur removal from liquid fuels. Catalysis Communications, 2009, 11(1): 1–6

  17. 17.

    Sengupta A, Kamble P D, Basu J K, Sengupta S. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Industrial & Engineering Chemistry Research, 2012, 51(1): 147–157

  18. 18.

    Přech J. Catalytic performance of advanced titanosilicate selective oxidation catalysts—a review. Catalysis Reviews, 2018, 60(1): 71–131

  19. 19.

    Přech J, Vitvarová D, Lupínková L, Kubů M, Čejka J. Titanium impregnated borosilicate zeolites for epoxidation catalysis. Microporous and Mesoporous Materials, 2015, 212: 28–34

  20. 20.

    Tsunoji N, Opanasenko M V, Kubů M, Čejka J, Nishida H, Hayakawa S, Ide Y, Sadakane M, Sano T. Highly active layered titanosilicate catalyst with high surface density of isolated titanium on the accessible interlayer surface. ChemCatChem, 2018, 10(12): 2536–2540

  21. 21.

    Hulea V, Moreau P, Di Renzo F. Thioether oxidation by hydrogen peroxide using titanium-containing zeolites as catalysts. Journal of Molecular Catalysis A Chemical, 1996, 111(3): 325–332

  22. 22.

    Corma A, Iglesias M, Sánchez F. Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catalysis Letters, 1996, 39(3): 153–156

  23. 23.

    Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

  24. 24.

    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

  25. 25.

    Fan W, Snyder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Lee Penn R, Stein A, Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991

  26. 26.

    Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606

  27. 27.

    Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793

  28. 28.

    Liu B, Zheng L, Zhu Z, Li C, Xi H, Qian Y. Hierarchically structured Beta zeolites with intercrystal mesopores and the improved catalytic properties. Applied Catalysis A, General, 2014, 470: 412–419

  29. 29.

    Du S, Chen X, Sun Q, Wang N, Jia M, Valtchev V, Yu J. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chemical Communications, 2016, 52(17): 3580–3583

  30. 30.

    Leng K, Sun Y, Zhang X, Yu M, Xu W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel, 2016, 174: 9–16

  31. 31.

    Roth W J, Cejka J. Two-dimensional zeolites: Dream or reality? Catalysis Science & Technology, 2011, 1(1): 43–53

  32. 32.

    Roth W J, Nachtigall P, Morris R E, Čejka J. Two-dimensional zeolites: Current status and perspectives. Chemical Reviews, 2014, 114(9): 4807–4837

  33. 33.

    Kon Y, Yokoi T, Yoshioka M, Tanaka S, Uesaka Y, Mochizuki T, Sato K, Tatsumi T. Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions. Tetrahedron, 2014, 70(41): 7584–7592

  34. 34.

    Prech J, Morris R E, Cejka J. Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science & Technology, 2016, 6(8): 2775–2786

  35. 35.

    Liu B, Duan Q, Li C, Zhu Z, Xi H, Qian Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure. New Journal of Chemistry, 2014, 38(9): 4380–4387

  36. 36.

    Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H, Terasaki O, Che S. p-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5(1): 4262

  37. 37.

    Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177

  38. 38.

    Emdadi L, Tran D T, Zhang J, Wu W, Song H, Gan Q, Liu D. Synthesis of titanosilicate pillared MFI zeolite as an efficient photocatalyst. RSC Advances, 2017, 7(6): 3249–3256

  39. 39.

    Sing K S W. Reporting physisorption data for gas solid systems—with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1982, 54(11): 2201–2218

  40. 40.

    Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y. Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach. Chemical Engineering Journal, 2012, 210(0): 96–102

  41. 41.

    Jin F, Chang C, Yang C W, Lee J F, Jang L Y, Cheng S. New mesoporous titanosilicate MCM-36 material synthesized by pillaring layered ERB-1 precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8715–8724

  42. 42.

    Přech J, Eliášová P, Aldhayan D, Kubů M. Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 2015, 243: 134–140

  43. 43.

    Zheng S, Heydenrych H R, Jentys A, Lercher J A. Influence of surface modification on the acid site distribution of HZSM-5. Journal of Physical Chemistry B, 2002, 106(37): 9552–9558

  44. 44.

    Shetti V N, Manikandan P, Srinivas D, Ratnasamy P. Reactive oxygen species in epoxidation reactions over titanosilicate molecular sieves. Journal of Catalysis, 2003, 216(1): 461–467

  45. 45.

    Camblor M A, Corma A, Perez-Pariente J. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm band. Journal of the Chemical Society. Chemical Communications, 1993, (6): 557–559

  46. 46.

    Huang D G, Zhang X, Liu T W, Huang C, Chen B H, Luo C W, Ruckenstein E, Chao Z S. Synthesis of high-performanced titanium silicalite-1 zeolite at very low usage of tetrapropyl ammonium hydroxide. Industrial & Engineering Chemistry Research, 2013, 52(10): 3762–3772

  47. 47.

    Lu H, Wang Y. Influence of seeds on the synthesis of TS-1 with inorganic materials. Reaction Kinetics and Catalysis Letters, 2006, 89(2): 219–227

  48. 48.

    Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

  49. 49.

    Liu B, Ren Y, Duan Q, Chen F, Xi H, Qian Y. Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks. Applied Surface Science, 2013, 279: 55–61

  50. 50.

    Ji X, Xu L, Du X, Lu X, Lu W, Sun J, Wu P. Simple CTAB surfactant-assisted hierarchical lamellar MWW titanosilicate: A high-performance catalyst for selective oxidations involving bulky substrates. Catalysis Science & Technology, 2017, 7(13): 2874–2885

  51. 51.

    Chandra D, Kishor Mal N, Mukherjee M, Bhaumik A. Titaniumrich highly ordered mesoporous silica synthesized by using a mixed surfactant system. Journal of Solid State Chemistry, 2006, 179(6): 1802–1807

  52. 52.

    Mukhopadhayay S M, Garofalini S H. Surface studies of TiO2-SiO2 glasses by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 1990, 126(3): 202–208

  53. 53.

    Van de Voorde B, Hezinova M, Lannoeye J, Vandekerkhove A, Marszalek B, Gil B, Beurroies I, Nachtigall P, De Vos D. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Physical Chemistry Chemical Physics, 2015, 17(16): 10759–10766

  54. 54.

    Ratnasamy P, Srinivas D, Knözinger H. Active sites and reactive intermediates in titanium silicate molecular sieves. Advances in Catalysis, 2004, 48: 1–169

  55. 55.

    Zheng D, Zhu W, Xun S, Zhou M, Zhang M, Jiang W, Qin Y, Li H. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids. Fuel, 2015, 159: 446–453

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21808040, 51476176, and 21776049). The support of the Science and Technology Program of Guangzhou, China (Grant No. 201804010172) is also gratefully acknowledged.

Author information

Correspondence to Baoyu Liu or Jing Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Mu, Q., Huang, J. et al. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity. Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-019-1859-3

Download citation

Keywords

  • MFI zeolite
  • catalysis
  • nanosheets
  • fabrication