Metal-organic framework UiO-66 membranes

  • Xinlei LiuEmail author
Open Access
Review Article


Metal-organic frameworks (MOFs) have emerged as a class of promising membrane materials. UiO-66 is a prototypical and stable MOF material with a number of analogues. In this article, we review five approaches for fabricating UiO-66 polycrystalline membranes including in situ synthesis, secondary synthesis, biphase synthesis, gas-phase deposition and electrochemical deposition, as well as their applications in gas separation, pervaporation, nanofiltration and ion separation. On this basis, we propose possible methods for scalable synthesis of UiO-66 membranes and their potential separation applications in the future.


membrane metal-organic framework UiO-66 separation 


  1. 1.
    Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530PubMedCrossRefGoogle Scholar
  2. 2.
    Shan M, Liu X, Wang X, Yarulina I, Seoane B, Kapteijn F, Gascon J. Facile manufacture of porous organic framework membranes for precombustion CO2 capture. Science Advances, 2018, 4(9): eaau1698PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Liu X L, Li Y S, Zhu G Q, Ban Y J, Xu L Y, Yang W S. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663CrossRefGoogle Scholar
  5. 5.
    Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 2011, 370(1): 1–22CrossRefGoogle Scholar
  6. 6.
    Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154PubMedCrossRefGoogle Scholar
  7. 7.
    Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149): 1230444CrossRefGoogle Scholar
  8. 8.
    Arnold M, Kortunov P, Jones D J, Nedellec Y, Kärger J, Caro J. Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate. European Journal of Inorganic Chemistry, 2007, 2007(1): 60–64CrossRefGoogle Scholar
  9. 9.
    Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008, 113(1): 132–138CrossRefGoogle Scholar
  10. 10.
    Liu Y, Ng Z, Khan E A, Jeong H K, Ching C, Lai Z. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 2009, 118(1): 296–301CrossRefGoogle Scholar
  11. 11.
    Yoo Y, Lai Z, Jeong H K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous and Mesoporous Materials, 2009, 123(1): 100–106CrossRefGoogle Scholar
  12. 12.
    Guo H, Zhu G, Hewitt I J, Qiu S. “Twin Copper Source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21(20): 4920–4924CrossRefGoogle Scholar
  14. 14.
    Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Venna S R, Carreon M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2010, 132(1): 76–78PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Qiu S, Xue M, Zhu G. Metal-organic framework membranes: From synthesis to separation application. Chemical Society Reviews, 2014, 43(16): 6116–6140PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Yao J, Wang H. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chemical Society Reviews, 2014, 43(13): 4470–4493PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Liu Y, Ban Y, Yang W. Microstructural engineering and architectural design of metal-organic framework membranes. Advanced Materials, 2017, 29(31): 1606949CrossRefGoogle Scholar
  20. 20.
    Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Liu Y, Pan J H, Wang N, Steinbach F, Liu X, Caro J. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Duan J, Jin W, Kitagawa S. Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332: 48–74CrossRefGoogle Scholar
  23. 23.
    Wang C, Liu X, Keser Demir N, Chen J P, Li K. Applications of water stable metal-organic frameworks. Chemical Society Reviews, 2016, 45(18): 5107–5134PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bai Y, Dou Y, Xie L H, Rutledge W, Li J R, Zhou H C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45(8): 2327–2367PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pearson R G. Hard and soft acids and bases. Journal of the American Chemical Society, 1963, 85(22): 3533–3539CrossRefGoogle Scholar
  26. 26.
    Yuan S, Qin J S, Lollar C T, Zhou H C. Stable metal-organic frameworks with group 4 metals: Current status and trends. ACS Central Science, 2018, 4(4): 440–450PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu X, Demir N K, Wu Z, Li K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 2015, 137(22): 6999–7002PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hu Z, Zhao D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials. Dalton Transactions (Cambridge, England), 2015, 44(44): 19018–19040CrossRefGoogle Scholar
  30. 30.
    Xu R, Wang Z, Wang M, Qiao Z, Wang J. High nanoparticles loadings mixed matrix membranes via chemical bridging-cross-linking for CO2 separation. Journal of Membrane Science, 2019, 573: 455–464CrossRefGoogle Scholar
  31. 31.
    Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165CrossRefGoogle Scholar
  32. 32.
    Ghalei B, Sakurai K, Kinoshita Y, Wakimoto K, Isfahani Ali P, Song Q, Doitomi K, Furukawa S, Hirao H, Kusuda H, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2(7): 17086CrossRefGoogle Scholar
  33. 33.
    Liu L, Xie X, Qi S, Li R, Zhang X, Song X, Gao C. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. Journal of Membrane Science, 2019, 580: 101–109CrossRefGoogle Scholar
  34. 34.
    Pang J, Kang Z, Wang R, Xu B, Nie X, Fan L, Zhang F, Du X, Feng S, Sun D. Exploring the sandwich antibacterial membranes based on UiO-66/graphene oxide for forward osmosis performance. Carbon, 2019, 144: 321–332CrossRefGoogle Scholar
  35. 35.
    Wang Y, Li X, Zhao S, Fang Z, Ng D, Xie C, Wang H, Xie Z. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance. Industrial & Engineering Chemistry Research, 2019, 58(1): 195–206CrossRefGoogle Scholar
  36. 36.
    Liu T Y, Yuan H G, Liu Y Y, Ren D, Su Y C, Wang X. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano, 2018, 12(9): 9253–9265PubMedCrossRefGoogle Scholar
  37. 37.
    Prasetya N, Donose B C, Ladewig B P. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(34): 16390–16402Google Scholar
  38. 38.
    Ma L, Svec F, Tan T, Lv Y. Mixed matrix membrane based on cross-linked poly[(ethylene glycol) methacrylate] and metal-organic framework for efficient separation of carbon dioxide and methane. ACS Applied Nano Materials, 2018, 1(6): 2808–2818CrossRefGoogle Scholar
  39. 39.
    Jia M, Feng Y, Qiu J, Zhang X F, Yao J. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Separation and Purification Technology, 2019, 213: 63–69CrossRefGoogle Scholar
  40. 40.
    Gao Z F, Feng Y, Ma D, Chung T S. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574: 124–135CrossRefGoogle Scholar
  41. 41.
    Jiang Y, Liu C, Caro J, Huang A. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211CrossRefGoogle Scholar
  42. 42.
    Sánchez-Laínez J, Gracia-Guillén I, Zornoza B, Téllez C, Coronas J. Thin supported MOF based mixed matrix membranes of Pebax® 1657 for biogas upgrade. New Journal of Chemistry, 2019, 43(1): 312–319CrossRefGoogle Scholar
  43. 43.
    Zhang X F, Feng Y, Wang Z, Jia M, Yao J. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. Journal of Membrane Science, 2018, 568: 10–16CrossRefGoogle Scholar
  44. 44.
    Satheeshkumar C, Yu H J, Park H, Kim M, Lee J S, Seo M. Thiolene photopolymerization of vinyl-functionalized metal-organic frameworks towards mixed-matrix membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6 (44): 21961–21968CrossRefGoogle Scholar
  45. 45.
    Jiang X, Li S, He S, Bai Y, Shao L. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(31): 15064–15073CrossRefGoogle Scholar
  46. 46.
    Golpour M, Pakizeh M. Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water. Chemical Engineering Journal, 2018, 345: 221–232CrossRefGoogle Scholar
  47. 47.
    Marti A M, Venna S R, Roth E A, Culp J T, Hopkinson D P. Simple fabrication method for mixed matrix membranes with insitu MOF growth for gas separation. ACS Applied Materials & Interfaces, 2018, 10(29): 24784–24790CrossRefGoogle Scholar
  48. 48.
    Ahmad M Z, Navarro M, Lhotka M, Zornoza B, Téllez C, de Vos W M, Benes N E, Konnertz N M, Visser T, Semino R, et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558: 64–77CrossRefGoogle Scholar
  49. 49.
    Mozafari M, Abedini R, Rahimpour A. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(26): 12380–12392CrossRefGoogle Scholar
  50. 50.
    Xiang F, Marti A M, Hopkinson D P. Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. Journal of Membrane Science, 2018, 556: 146–153CrossRefGoogle Scholar
  51. 51.
    Xu Y M, Japip S, Chung T S. Mixed matrix membranes with nanosized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1–C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226CrossRefGoogle Scholar
  52. 52.
    Molavi H, Shojaei A, Mousavi S A. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2-UiO-66. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(6): 2775–2791CrossRefGoogle Scholar
  53. 53.
    Zamidi Ahmad M, Navarro M, Lhotka M, Zornoza B, Téllez C, Fila V, Coronas J. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474CrossRefGoogle Scholar
  54. 54.
    Rodrigues M A, Ribeiro J S, Costa E S, Miranda J L, Ferraz H C. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology, 2018, 192: 491–500CrossRefGoogle Scholar
  55. 55.
    Sutrisna P D, Hou J, Zulkifli M Y, Li H, Zhang Y, Liang W, D’Alessandro Deanna M, Chen V. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(3): 918–931CrossRefGoogle Scholar
  56. 56.
    Liu S, Sang X, Wang L, Zhang J, Song J, Han B. Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance. Electrochimica Acta, 2017, 257: 243–249CrossRefGoogle Scholar
  57. 57.
    Donnadio A, Narducci R, Casciola M, Marmottini F, D’Amato R, Jazestani M, Chiniforoshan H, Costantino F. Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Applied Materials & Interfaces, 2017, 9(48): 42239–42246CrossRefGoogle Scholar
  58. 58.
    Liu M, Wang L, Zheng X, Xie Z. Zirconium-based nanoscale metal-organic framework/poly(ε-caprolactone) mixed-matrix membranes as effective antimicrobials. ACS Applied Materials & Interfaces, 2017, 9(47): 41512–41520CrossRefGoogle Scholar
  59. 59.
    Friebe S, Mundstock A, Volgmann K, Caro J. On the better understanding of the surprisingly high performance of metal-organic framework-based mixed-matrix membranes using the example of UiO-66 and Matrimid. ACS Applied Materials & Interfaces, 2017, 9(47): 41553–41558CrossRefGoogle Scholar
  60. 60.
    Guan K, Zhao D, Zhang M, Shen J, Zhou G, Liu G, Jin W. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. Journal of Membrane Science, 2017, 542: 41–51CrossRefGoogle Scholar
  61. 61.
    Cheng X, Jiang X, Zhang Y, Lau C H, Xie Z, Ng D, Smith S J D, Hill M R, Shao L. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Applied Materials & Interfaces, 2017, 9(44): 38877–38886CrossRefGoogle Scholar
  62. 62.
    Yao B J, Ding L G, Li F, Li J T, Fu Q J, Ban Y, Guo A, Dong Y B. Chemically cross-linked MOF membrane generated from imidazolium-based ionic liquid-decorated UiO-66 type NMOF and its application toward CO2 separation and conversion. ACS Applied Materials & Interfaces, 2017, 9(44): 38919–38930CrossRefGoogle Scholar
  63. 63.
    Ma D, Han G, Peh S B, Chen S B. Water-stable metal-organic framework UiO-66 for performance enhancement of forward osmosis membranes. Industrial & Engineering Chemistry Research, 2017, 56(44): 12773–12782CrossRefGoogle Scholar
  64. 64.
    Song Z, Qiu F, Zaia E W, Wang Z, Kunz M, Guo J, Brady M, Mi B, Urban J J. Dual-channel, molecular-sieving core/shell ZIF@-MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758PubMedCrossRefGoogle Scholar
  65. 65.
    Sun H, Tang B, Wu P. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Applied Materials & Interfaces, 2017, 9(25): 21473–21484CrossRefGoogle Scholar
  66. 66.
    Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977CrossRefGoogle Scholar
  67. 67.
    Xu Y M, Chung T S. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 2017, 531: 16–26CrossRefGoogle Scholar
  68. 68.
    Trinh D X, Tran T P N, Taniike T. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Separation and Purification Technology, 2017, 177: 249–256CrossRefGoogle Scholar
  69. 69.
    Ma J, Guo X, Ying Y, Liu D, Zhong C. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chemical Engineering Journal, 2017, 313: 890–898CrossRefGoogle Scholar
  70. 70.
    Guo X, Liu D, Han T, Huang H, Yang Q, Zhong C. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(4): 1303–1312CrossRefGoogle Scholar
  71. 71.
    Castarlenas S, Téllez C, Coronas J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017, 526: 205–211CrossRefGoogle Scholar
  72. 72.
    Ma D, Peh S B, Han G, Chen S B. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection. ACS Applied Materials & Interfaces, 2017, 9(8): 7523–7534CrossRefGoogle Scholar
  73. 73.
    Khdhayyer M R, Esposito E, Fuoco A, Monteleone M, Giorno L, Jansen J C, Attfield M P, Budd P M. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2017, 173: 304–313CrossRefGoogle Scholar
  74. 74.
    Hu Z, Kang Z, Qian Y, Peng Y, Wang X, Chi C, Zhao D. Mixed matrix membranes containing UiO-66(Hf)-(OH)2 metal-organic framework nanoparticles for efficient H2/CO2 separation. Industrial & Engineering Chemistry Research, 2016, 55(29): 7933–7940CrossRefGoogle Scholar
  75. 75.
    Yao B J, Jiang W L, Dong Y, Liu Z X, Dong Y B. Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(30): 10565–10571Google Scholar
  76. 76.
    Smith S J D, Lau C H, Mardel J I, Kitchin M, Konstas K, Ladewig B P, Hill M R. Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(27): 10627–10634CrossRefGoogle Scholar
  77. 77.
    Moreton J C, Denny M S, Cohen S M. High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. Chemical Communications, 2016, 52(100): 14376–14379PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang W L, Ding L G, Yao B J, Wang J C, Chen G J, Li Y A, Ma J P, Ji J, Dong Y, Dong Y B. A MOF-membrane based on the covalent bonding driven assembly of a NMOF with an organic oligomer and its application in membrane reactors. Chemical Communications, 2016, 52(93): 13564–13567PubMedCrossRefGoogle Scholar
  79. 79.
    Su N C, Sun D T, Beavers C M, Britt D K, Queen W L, Urban J J. Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931CrossRefGoogle Scholar
  80. 80.
    Armstrong M R, Arredondo K Y Y, Liu C Y, Stevens J E, Mayhob A, Shan B, Senthilnathan S, Balzer C J, Mu B. UiO-66 MOF and poly(vinyl cinnamate) nanofiber composite membranes synthesized by a facile three-stage process. Industrial & Engineering Chemistry Research, 2015, 54(49): 12386–12392CrossRefGoogle Scholar
  81. 81.
    Anjum M W, Vermoortele F, Khan A L, Bueken B, De Vos D E, Vankelecom I F J. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201CrossRefGoogle Scholar
  82. 82.
    Smith S J D, Ladewig B P, Hill A J, Lau C H, Hill M R. Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Scientific Reports, 2015, 5(1): 7823PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nik O G, Chen X Y, Kaliaguine S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413–414: 48–61CrossRefGoogle Scholar
  84. 84.
    Zhang Y, Feng X, Li H, Chen Y, Zhao J, Wang S, Wang L, Wang B. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 54(14): 4259–4263PubMedCrossRefGoogle Scholar
  85. 85.
    Kickelbick G, Feth M P, Bertagnolli H, Puchberger M, Holzinger D, Gross S. Formation of organically surface-modified metal oxo clusters from carboxylic acids and metal alkoxides: A mechanistic study. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2002, (20): 3892–3898Google Scholar
  86. 86.
    Liu X, Wang C, Wang B, Li K. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311CrossRefGoogle Scholar
  87. 87.
    Huang K, Wang B, Guo S, Li K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition, 2018, 57(42): 13892–13896PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang H, Hou J, Hu Y, Wang P, Ou R, Jiang L, Liu J Z, Freeman B D, Hill A J, Wang H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 2018, 4(2): eaaq0066PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wan L, Zhou C, Xu K, Feng B, Huang A. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 2017, 252: 207–213CrossRefGoogle Scholar
  90. 90.
    Wu F, Cao Y, Liu H, Zhang X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65CrossRefGoogle Scholar
  91. 91.
    Miyamoto M, Hori K, Goshima T, Takaya N, Oumi Y, Uemiya S. An organoselective zirconium-based metal-organic-framework UiO-66 membrane for pervaporation. European Journal of Inorganic Chemistry, 2017, 2017(14): 2094–2099CrossRefGoogle Scholar
  92. 92.
    Liu J, Canfield N, Liu W. Preparation and characterization of a hydrophobic metal-organic framework membrane supported on a thin porous metal sheet. Industrial & Engineering Chemistry Research, 2016, 55(13): 3823–3832CrossRefGoogle Scholar
  93. 93.
    Wu F, Lin L, Liu H, Wang H, Qiu J, Zhang X. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350CrossRefGoogle Scholar
  94. 94.
    Wang X, Zhai L, Wang Y, Li R, Gu X, Yuan Y D, Qian Y, Hu Z, Zhao D. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing. ACS Applied Materials & Interfaces, 2017, 9(43): 37848–37855CrossRefGoogle Scholar
  95. 95.
    Friebe S, Geppert B, Steinbach F, Caro J. Metal-organic framework UiO-66 layer: A highly oriented membrane with good selectivity and hydrogen permeance. ACS Applied Materials & Interfaces, 2017, 9(14): 12878–12885CrossRefGoogle Scholar
  96. 96.
    Shan B, James J B, Armstrong M R, Close E C, Letham P A, Nikkhah K, Lin Y S, Mu B. Influences of deprotonation and modulation on nucleation and growth of UiO-66: Intergrowth and orientation. Journal of Physical Chemistry C, 2018, 122(4): 2200–2206CrossRefGoogle Scholar
  97. 97.
    Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition, 2009, 48(26): 4739–4743PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(24): 6643–6651Google Scholar
  99. 99.
    Zhang C, Zhao Y, Li Y, Zhang X, Chi L, Lu G. Defect-controlled preparation of UiO-66 metal-organic framework thin films with molecular sieving capability. Chemistry, an Asian Journal, 2016, 11(2): 207–210PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zhang Y, Zhao J, Wang K, Gao L, Meng M, Yan Y. Green synthesis of acid-base bi-functional UiO-66-type metal-organic frameworks membranes supported on polyurethane foam for glucose conversion. ChemistrySelect, 2018, 3(32): 9378–9387CrossRefGoogle Scholar
  101. 101.
    Liang H, Jiao X, Li C, Chen D. Flexible self-supported metal-organic framework mats with exceptionally high porosity for enhanced separation and catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 334–341Google Scholar
  102. 102.
    Lu A X, Ploskonka A M, Tovar T M, Peterson G W, DeCoste J B. Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502–14506CrossRefGoogle Scholar
  103. 103.
    Betke U, Proemmel S, Rannabauer S, Lieb A, Scheffler M, Scheffler F. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous and Mesoporous Materials, 2017, 239: 209–220CrossRefGoogle Scholar
  104. 104.
    Zhang X, Zhao Y, Mu S, Jiang C, Song M, Fang Q, Xue M, Qiu S, Chen B. UiO-66-coated mesh membrane with underwater superoleophobicity for high-efficiency oil-water separation. ACS Applied Materials & Interfaces, 2018, 10(20): 17301–17308CrossRefGoogle Scholar
  105. 105.
    Miyamoto M, Kohmura S, Iwatsuka H, Oumi Y, Uemiya S. In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer. CrystEng-Comm, 2015, 17(18): 3422–3425CrossRefGoogle Scholar
  106. 106.
    Lausund K B, Nilsen O. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications, 2016, 7(1): 13578PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lausund K B, Petrovic V, Nilsen O. All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton Transactions (Cambridge, England), 2017, 46(48): 16983–16992CrossRefGoogle Scholar
  108. 108.
    Virmani E, Rotter J M, Mähringer A, von Zons T, Godt A, Bein T, Wuttke S, Medina D D. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. Journal of the American Chemical Society, 2018, 140(14): 4812–4819PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Hod I, Bury W, Karlin D M, Deria P, Kung C W, Katz M J, So M, Klahr B, Jin D, Chung Y W, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Advanced Materials, 2014, 26(36): 6295–6300PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Stassen I, Styles M, Van Assche T, Campagnol N, Fransaer J, Denayer J, Tan J C, Falcaro P, De Vos D, Ameloot R. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chemistry of Materials, 2015, 27(5): 1801–1807CrossRefGoogle Scholar
  111. 111.
    Shangkum G, Chammingkwan P, Trinh D, Taniike T. Design of a semi-continuous selective layer based on deposition of UiO-66 nanoparticles for nanofiltration. Membranes, 2018, 8(4): 129PubMedCentralCrossRefPubMedGoogle Scholar
  112. 112.
    Ghorbanpour A, Huelsenbeck L D, Smilgies D M, Giri G. Oriented UiO-66 thin films through solution shearing. CrystEngComm, 2018, 20(3): 294–300CrossRefGoogle Scholar
  113. 113.
    Kosinov N, Gascon J, Kapteijn F, Hensen E J M. Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499: 65–79CrossRefGoogle Scholar
  114. 114.
    Piszczek P, Radtke A, Grodzicki A, Wojtczak A, Chojnacki J. The new type of [Zr6(μ3-O)4(μ3-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R = But, C(CH3)2Et). Polyhedron, 2007, 26(3): 679–685CrossRefGoogle Scholar
  115. 115.
    Yao H B, Yan Y X, Gao H L, Vaughn J, Pappas I, Masters J G, Yuan S, Yu S H, Pan L. An investigation of zirconium(iv)-glycine (CP-2) hybrid complex in bovine serum albumin protein matrix under varying conditions. Journal of Materials Chemistry, 2011, 21 (47): 19005–19012CrossRefGoogle Scholar
  116. 116.
    van der Drift A. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Research Reports, 1967, 22: 267–288Google Scholar
  117. 117.
    Lu G, Cui C, Zhang W, Liu Y, Huo F. Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. Chemistry, an Asian Journal, 2013, 8(1): 69–72PubMedCrossRefGoogle Scholar
  118. 118.
    Miikkulainen V, Leskelä M, Ritala M, Puurunen R L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 2013, 113(2): 021301CrossRefGoogle Scholar
  119. 119.
    Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011PubMedCrossRefGoogle Scholar
  120. 120.
    Stassen I, Styles M, Grenci G, Gorp Hans V, Vanderlinden W, Feyter Steven D, Falcaro P, Vos D D, Vereecken P, Ameloot R. Chemical vapour deposition ofzeolitic imidazolate framework thin films. Nature Materials, 2015, 15(3): 304–310PubMedCrossRefGoogle Scholar
  121. 121.
    Li W, Su P, Li Z, Xu Z, Wang F, Ou H, Zhang J, Zhang G, Zeng E. Ultrathin metal-organic framework membrane production by gelvapour deposition. Nature Communications, 2017, 8(1): 406PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L. Growth of environmentally stable transition metal selenide films. Nature Materials, 2019, 18(6): 602–607PubMedCrossRefGoogle Scholar
  123. 123.
    Falcaro P, Ricco R, Doherty C M, Liang K, Hill A J, Styles M J. MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43(16): 5513–5560PubMedCrossRefGoogle Scholar
  124. 124.
    Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels B F, De Vos D E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials, 2009, 21(13): 2580–2582CrossRefGoogle Scholar
  125. 125.
    Li M, Dincă M. Reductive electrosynthesis of crystalline metal-organic frameworks. Journal of the American Chemical Society, 2011, 133(33): 12926–12929PubMedCrossRefGoogle Scholar
  126. 126.
    Wu W, Li Z, Chen Y, Li W. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture. Environmental Science & Technology, 2019, 53(7): 3764–3772CrossRefGoogle Scholar
  127. 127.
    Devautour-Vinot S, Martineau C, Diaby S, Ben-Yahia M, Miller S, Serre C, Horcajada P, Cunha D, Taulelle F, Maurin G. Caffeine confinement into a series of functionalized porous zirconium MOFs: A joint experimental/modeling exploration. Journal of Physical Chemistry C, 2013, 117(22): 11694–11704CrossRefGoogle Scholar
  128. 128.
    Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen M H, Jakobsen S, Lillerud K P, Lamberti C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chemistry of Materials, 2011, 23(7): 1700–1718CrossRefGoogle Scholar
  129. 129.
    Wu H, Chua Y S, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Trickett C A, Gagnon K J, Lee S, Gándara F, Bürgi H B, Yaghi O M. Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte Chemie International Edition, 2015, 54(38): 11162–11167PubMedCrossRefGoogle Scholar
  131. 131.
    Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75PubMedCrossRefGoogle Scholar
  132. 132.
    DeStefano M R, Islamoglu T, Garibay S J, Hupp J T, Farha O K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 2017, 29(3): 1357–1361CrossRefGoogle Scholar
  133. 133.
    Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorganic Chemistry, 2015, 54(10): 4862–4868PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Authors and Affiliations

  1. 1.Catalysis Engineering, Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations