Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation

  • 10 Accesses

Abstract

Hierarchical ZSM-5 zeolite with radial mesopores is controllably synthesized using piperidine in a NaOH solution. The piperidine molecules enter the zeolite micropores and protect the zeolite framework from extensive desilication. The areas containing fewer aluminum atoms contain fewer piperidine protectant molecules and so they dissolve first. Small amounts of mesopores are then gradually generated in areas with more aluminum atoms and more piperidine protectant. In this manner, radial mesopores are formed in the ZSM-5 zeolite with a maximal preservation of the micropores and active sites. The optimal hierarchical ZSM-5 zeolite, prepared with a molar ratio of piperidine to zeolite of 0.03, had a mesopore surface area of 136 m2·g−1 and a solid yield of 80%. The incorporation of the radial mesopores results in micropores that are interconnected which shortened the average diffusion path length. Compared to the parent zeolite, the hierarchical ZSM-5 zeolite possesses more accessible acid sites and has a higher catalytic activity and a longer lifetime for the alkylation of benzene.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614

  2. 2.

    Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702

  3. 3.

    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420

  4. 4.

    Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910

  5. 5.

    Zheng H, Zhai D, Zhao L, Zhang C, Yu S, Gao J, Xu C. Insight into the contribution of isolated mesopore on diffusion in hierarchical zeolites: The effect of temperature. Industrial & Engineering Chemistry Research, 2018, 57(15): 5453–5463

  6. 6.

    Han J, Cho J, Kim J C, Ryoo R. Confinement of supported metal catalysts at high loading in the mesopore network of hierarchical zeolites, with access via the microporous windows. ACS Catalysis, 2018, 8(2): 876–879

  7. 7.

    Jia L Y, Raad M, Hamieh S, Toufaily J, Hamieh T, Bettahar M M, Mauviel G, Tarrighi M, Pinard L, Dufour A. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics. Green Chemistry, 2017, 19(22): 5442–5459

  8. 8.

    Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793

  9. 9.

    Zhang K, Ostraat M L. Innovations in hierarchical zeolite synthesis. Catalysis Today, 2016, 264: 3–15

  10. 10.

    Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

  11. 11.

    Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

  12. 12.

    Zhu K, Egeblad K, Christensen C H. Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. European Journal of Inorganic Chemistry, 2007, 2007(25): 3955–3960

  13. 13.

    Xiao F, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093

  14. 14.

    Zhao Z, Liu Y, Wu H, Li X, He M, Wu P. Hydrothermal synthesis of mesoporous titanosilicate with the aid of amphiphilic organosilane. Journal of Porous Materials, 2010, 17(4): 399–408

  15. 15.

    Liu H, Zhang S, Xie S, Zhang W, Xin W, Liu S, Xu L. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route. Chinese Journal of Catalysis, 2018, 39(1): 167–180

  16. 16.

    Wang X, Chen H, Meng F, Gao F, Sun C, Sun L, Wang S, Wang L, Wang Y. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous and Mesoporous Materials, 2017, 243: 271–280

  17. 17.

    Groen J C, Jansen J C, Moulijn J A, Pérez-Ramírez J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 108(35): 13062–13065

  18. 18.

    Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chemistry (Weinheim an der Bergstrasse, Germany), 2005, 11(17): 4983–4994

  19. 19.

    Rutkowska M, Pacia I, Basąg S, Kowalczyk A, Piwowarska Z, Duda M, Tarach K A, Góra-Marek K, Michalik M, Díaz U, Chmielarz L. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes. Microporous and Mesoporous Materials, 2017, 246: 193–206

  20. 20.

    Oruji S, Khoshbin R, Karimzadeh R. Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: The effect of irradiation time. Fuel Processing Technology, 2018, 176: 283–295

  21. 21.

    Groen J C, Sano T, Moulijn J A, Pérez-Ramírez J. Alkalinemediated mesoporous mordenite zeolites for acid-catalyzed conversions. Journal of Catalysis, 2007, 251(1): 21–27

  22. 22.

    Pérez-Ramírez J, Abello S, Villaescusa L A, Bonilla A. Toward functional clathrasils: Size- and composition-controlled octadecasil nanocrystals by desilication. Angewandte Chemie International Edition, 2008, 47(41): 7913–7917

  23. 23.

    Verboekend D, Pérez-Ramírez J. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147

  24. 24.

    Sadowska K, Wach A, Olejniczak Z, Kustrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(3): 82–88

  25. 25.

    Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241(1–3): 53–58

  26. 26.

    Pérez-Ramírez J, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979

  27. 27.

    Milina M, Mitchell S, Crivelli P, Cooke D, Pérez-Ramírez J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 2014, 5(1): 3922–3931

  28. 28.

    Wang D, Zhang L, Chen L, Wu H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521

  29. 29.

    Wang D, Xu L, Wu P. Hierarchical, core-shell meso-ZSM5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545

  30. 30.

    Kalipcilar H, Culfaz A. Influence of nature of silica source on template-free synthesis of ZSM-5. Crystal Research and Technology, 2001, 36(11): 1197–1207

  31. 31.

    Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska V T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

  32. 32.

    Groen J C, Moulijn J A, Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131

  33. 33.

    Yoo W C, Zhang X, Tsapatsis M, Stein A. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 2012, 149(1): 147–157

  34. 34.

    Pérez-Ramírez J, Abelló S, Bonilla A, Groen J C. Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Advanced Functional Materials, 2009, 19(1): 164–172

  35. 35.

    Gornicka E, Rode J E. Raczynska, E D, Dasiewicz B, Dobrowolski J C. Vibrational Spectroscopy, 2004, 36: 105–115

  36. 36.

    Kokotailo G T, Lawton S L, Olson D H, Meier W M. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438

  37. 37.

    Zhu K, Sun J, Liu J, Wang L, Wan H, Hu J, Wang Y, Peden C H F, Nie Z. Solvent evaporation assisted preparation of oriented nanocrystalline mesoporous MFI zeolites. ACS Catalysis, 2011, 1(7): 682–690

  38. 38.

    Liu Y, Zhang W, Liu Z, Xu S, Wang Y, Xie Z, Han X, Bao X. Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. Journal of Physical Chemistry C, 2008, 112(39): 15375–15381

  39. 39.

    Schumacher R, Karge H G. Sorption kinetics study of the diethylbenzene isomers in MFI-type zeolites. Microporous and Mesoporous Materials, 1999, 30(2–3): 307–314

  40. 40.

    Zhou J, Liu Z, Wang Y, Gao H, Li L, Yang W, Xie Z, Tang Y. Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement. RSC Advances, 2014, 4(82): 43752–43755

  41. 41.

    Yang W, Wang Z, Sun H, Zhang B. Advances in development and industrial applications of ethylbenzene processes. Chinese Journal of Catalysis, 2016, 37(1): 16–26

  42. 42.

    Saxena S K, Viswanadham N. Hierarchically nano porous nano crystalline ZSM-5 for improved alkylation of benzene with bioethanol. Applied Materials Today, 2016, 5: 25–32

  43. 43.

    Lei Z, Liu L, Dai C. Insight into the reaction mechanism and charge transfer analysis for the alkylation of benzene with propylene over H-β zeolite. Molecular Catalysis, 2018, 454: 1–11

  44. 44.

    Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2017YFB0702800) and China Postdoctoral Science Foundation (2016M600347).

Author information

Correspondence to Weimin Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Sun, H., Liu, W. et al. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation. Front. Chem. Sci. Eng. (2019). https://doi.org/10.1007/s11705-019-1853-9

Download citation

Keywords

  • hierarchical ZSM-5 zeolite
  • protective desilication
  • piperidine
  • radial mesopores
  • benzene alkylation