Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces

  • 20 Accesses

  • 1 Citations

Abstract

Reactions of atoms and molecules on chamber walls in contact with low temperature plasmas are important in various technological applications. Plasma-surface interactions are complex and relatively poorly understood. Experiments performed over the last decade by several groups prove that interactions of reactive species with relevant plasma-facing materials are characterized by distributions of adsorption energy and reactivity. In this paper, we develop a kinetic Monte Carlo (KMC) model that can effectively handle chemical kinetics on such heterogenous surfaces. Using this model, we analyse published adsorption-desorption kinetics of chlorine molecules and recombination of oxygen atoms on rotating substrates as a test case for the KMC model.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Donnelly V M, Kornblit A. Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2013, 31(5): 050825–050872

  2. 2.

    Zhang D, Kushner M J. Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2001, 19(2): 524–538

  3. 3.

    Brichon P, Despiau-Pujo E, Mourey O, Joubert O. Key plasma parameters for nanometric precision etching of Si films in chlorine discharges. Journal of Applied Physics, 2015, 118(5): 053303–053312

  4. 4.

    Barone M E, Graves D B. Molecular-dynamics simulations of direct reactive ion etching of silicon by fluorine and chlorine. Journal of Applied Physics, 1995, 78(11): 6604–6617

  5. 5.

    Benedikt J, Woen R V, van Mensfoort S L M, Perina V, Hong J, van de Sanden M C M. Plasma chemistry during the deposition of a-C:H films and its influence on film properties. Diamond and Related Materials, 2003, 12(2): 90–97

  6. 6.

    Tsalikis D G, Baig C, Mavrantzas V G, Amanatides E, Mataras D. A hybrid kinetic Monte Carlo method for simulating silicon films grown by plasma-enhanced chemical vapor deposition. Journal of Chemical Physics, 2013, 139(20): 204706–204719

  7. 7.

    Crose M, Sang-Il Kwon J, Nayhouse M, Ni D, Christofides P D. Multiscale modeling and operation of PECVD of thin film solar cells. Chemical Engineering Science, 2015, 136: 50–61

  8. 8.

    Zyulkov I, Krishtab M, De Gendt S, Armini S. Selective Ru ALD as a catalyst for sub-seven-nanometer bottom-up metal interconnects. ACS Applied Materials & Interfaces, 2017, 9(36): 31031–31041

  9. 9.

    von Keudell A, Moller W. A combined plasma-surface model for the deposition of C:H films from a methane plasma. Journal of Applied Physics, 1994, 75(12): 7718–7727

  10. 10.

    Neyts E C. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena: An Official Journal of the American Vacuum Society, 2012, 30: 030803–030819

  11. 11.

    Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

  12. 12.

    Kim H H. Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Processes and Polymers, 2004, 1(2): 91–110

  13. 13.

    Neyts E C, Bogaerts A. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010–224027

  14. 14.

    Meana-Paneda R, Paukku Y, Duanmu K, Norman P, Schwartzentruber T E, Truhlar D G. Atomic oxygen recombination at surface defects on reconstructed (0001) α-quartz exposed to atomic and molecular oxygen. Journal of Physical Chemistry C, 2015, 119(17): 9287–9301

  15. 15.

    Neyts E C, Brault P. Molecular dynamics simulations for plasmasurface interactions. Plasma Processes and Polymers, 2017, 14(1–2): 1600145–1600164

  16. 16.

    Marinov D, Teixeira C, Guerra V. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(1–2): 1600175–1600192

  17. 17.

    Guerra V, Marinov D. Dynamical Monte Carlo methods for plasma-surface reactions. Plasma Sources Science & Technology, 2016, 25 (4): 045001–045016

  18. 18.

    Cuppen H M, Karssemeijer L J, Lamberts T. The kinetic Monte Carlo method as a way to solve the master equation for interstellar grain chemistry. Chemical Reviews, 2013, 113(12): 8840–8871

  19. 19.

    Norman P, Schwartzentruber T E, Leverentz H, Luo S, Meana-Paneda R, Paukku Y, Truhlar D G. The structure of silica surfaces exposed to atomic oxygen. Journal of Physical Chemistry C, 2013, 117(18): 9311–9321

  20. 20.

    Stamatakis M. Kinetic modelling of heterogeneous catalytic systems. Journal of Physics Condensed Matter, 2015, 27(1): 013001–013028

  21. 21.

    Rutigliano M, Zazza C, Sanna N, Pieretti A, Mancini G, Barone V, Cacciatore M. Oxygen adsorption on β-cristobalite polymorph: ab initio modeling and semiclassical time-dependent dynamics. Journal of Physical Chemistry A, 2009, 113(52): 15366–15375

  22. 22.

    Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K. In-situ surface recombination measurements of oxygen atoms on anodized aluminum in an oxygen plasma. Journal of Physical Chemistry C, 2008, 112(24): 8963–8968

  23. 23.

    Donnelly V M, Guha J, Stafford L. Critical review: Plasma-surface reactions and the spinning wall method. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2011, 29(1): 010801–010825

  24. 24.

    Guha J, Donnelly V M. Studies of chlorine-oxygen plasmas and evidence for heterogeneous formation of ClO and ClO2. Journal of Applied Physics, 2009, 105(11): 113307–113316

  25. 25.

    Marinov D, Guaitella O, Rousseau A, Ionikh Y. Production of molecules on a surface under plasma exposure: Example of NO on pyrex. Journal of Physics. D, Applied Physics, 2010, 43(11): 115203–115209

  26. 26.

    Guerra V, Marinov D, Guaitella O, Rousseau A. NO oxidation on plasma pretreated Pyrex: The case for a distribution of reactivity of adsorbed O atoms. Journal of Physics. D, Applied Physics, 2014, 47 (22): 224012–224023

  27. 27.

    Guaitella O, Lazzaroni C, Marinov D, Rousseau A. Evidence of atomic adsorption on TiO2 under plasma exposure and related C2H2 surface reactivity. Applied Physics Letters, 2010, 97(1): 011502–011504

  28. 28.

    Marinov D, Guaitella O, de los Arcos T, von Keudell A, Rousseau A. Adsorption and reactivity of nitrogen atoms on silica surface under plasma exposure. Journal of Physics. D, Applied Physics, 2014, 47(47): 475204–475214

  29. 29.

    Kim Y C, Boudart M. Recombination of oxygen, nitrogen, and hydrogen atoms on silica: Kinetics and mechanism. Langmuir, 1991, 7(12): 2999–3005

  30. 30.

    Guerra V. Analytical model of heterogeneous atomic recombination on silicalike surfaces. IEEE Transactions on Plasma Science, 2007, 35(5): 1397–1412

  31. 31.

    Stafford L, Guha J, Khare R, Mattei S, Boudreault O, Clain B, Donnelly VM. Experimental and modeling study of O and Cl atoms surface recombination reactions in O2 and Cl2 plasmas. Pure and Applied Chemistry, 2010, 82(6): 1301–1315

  32. 32.

    Guerra V, Dias F M, Loureiro J, Sa P A, Supiot P, Dupret C, Popov T. Time-dependence of the electron energy distribution function in the nitrogen afterglow. IEEE Transactions on Plasma Science, 2003, 31(4): 542–552

  33. 33.

    Gillespie D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 1976, 22(4): 403–434

  34. 34.

    Kurunczi P F, Guha J, Donnelly V M. Recombination reactions of oxygen atoms on an anodized aluminum plasma reactor wall, studied by a spinning wall method. Journal of Physical Chemistry B, 2005, 109(44): 20989–20998

  35. 35.

    Stafford L, Guha J, Donnelly V M. Recombination probability of oxygen atoms on dynamic stainless steel surfaces in inductively coupled O2 plasmas. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2008, 26(3): 455–461

  36. 36.

    Guha J, Khare R, Stafford L, Donnelly V M, Sirard S, Hudson E A. Effect of Cu contamination on recombination of O atoms on a plasma-oxidized silicon surface. Journal of Applied Physics, 2009, 105(11): 113309–113316

  37. 37.

    Janssen C, Tuzson B. Isotope evidence for ozone formation on surfaces. Journal of Physical Chemistry A, 2010, 114(36): 9709–9719

  38. 38.

    Marinov D, Guaitella O, Booth J P, Rousseau A. Direct observation of ozone formation on SiO2 surfaces in O2 discharges. Journal of Physics. D, Applied Physics, 2013, 46(3): 032001–032004

  39. 39.

    Lopaev D V, Malykhin E M, Zyryanov S M. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone. Journal of Physics. D, Applied Physics, 2010, 44(1): 015202–015217

Download references

Acknowledgements

Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 752164. DM is grateful to Prof. Vasco Guerra for fruitful discussions about surface kinetics and KMC modelling.

Author information

Correspondence to Daniil Marinov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marinov, D. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces. Front. Chem. Sci. Eng. 13, 815–822 (2019). https://doi.org/10.1007/s11705-019-1837-9

Download citation

Keywords

  • plasma-surface interaction
  • kinetic Monte Carlo
  • plasma nano technology