Advertisement

Frontiers of Chemical Science and Engineering

, Volume 13, Issue 3, pp 493–500 | Cite as

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

  • Glenn J. Sim
  • Kakui Ma
  • Zhixiang Huang
  • Shaozhuan Huang
  • Ye Wang
  • Huiying YangEmail author
Research Article
Part of the following topical collections:
  1. The Future of Plasma Nanoscience

Abstract

Three-dimensional Prussian blue (PB) nanostructures was obtained via a one-step hydrothermal method. Subsequently, two-dimensional tin disulfide (SnS2) nanosheets were grown onto PB through a facile hydrothermal synthesis. The as prepared SnS2/PB is further employed as the anode of sodium ion batteries (SIBs). SnS2/PB nanoarchitecture delivers a specific capacity of 725.7 mAh-g−1 at 50 mA·g−1. When put through more than 200 cycles, it achieved a stable cycling capacity of 400 mAh·g−1 at 200 mA·g−1. The stable Na+ storage properties of SnS2/PB was attributed to the synergistic effect among the conductive PB carbon, used as the template in this work. These results obtained potentially paves the way for the development of excellent electrochemical performance with stable performance of SIBs.

Keywords

Prussian blue carbon nanocubes tin disulfide sodium ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research work is supported by Singapore University of Technology and Design DmanD center.

Supplementary material

11705_2019_1826_MOESM1_ESM.pdf (77 kb)
Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

References

  1. 1.
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928–935CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652–657CrossRefGoogle Scholar
  4. 4.
    Slater M D, Kim D, Lee E, Johnson C S. Sodium ion batteries. Advanced Functional Materials, 2013, 23: 947–958CrossRefGoogle Scholar
  5. 5.
    Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable & Sustainable Energy Reviews, 2016, 64: 106–128CrossRefGoogle Scholar
  6. 6.
    Liserre M, Sauter T, Hung J Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Industrial Electronics Magazine, 2010, 4(1): 18–37CrossRefGoogle Scholar
  7. 7.
    Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013, 6(8): 2338–2360CrossRefGoogle Scholar
  8. 8.
    Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable & Sustainable Energy Reviews, 2014, 39: 748–764CrossRefGoogle Scholar
  9. 9.
    Cao Y, Xiao L, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L V, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 2012, 12(7): 3783–3787CrossRefPubMedGoogle Scholar
  10. 10.
    Kundu D, Talaie E, Duffort V, Nazar L F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 2015, 54(11): 3431–3448CrossRefPubMedGoogle Scholar
  11. 11.
    Wang Y, Xing G, Han Z J, Shi Y, Wong J I, Huang Z X, Ostrikov K K, Yang H Y. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6(15): 8884–8890CrossRefPubMedGoogle Scholar
  12. 12.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682CrossRefPubMedGoogle Scholar
  13. 13.
    Balogun M S, Luo Y, Qiu W, Liu P, Tong Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98(Supplement C): 162–178CrossRefGoogle Scholar
  14. 14.
    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B. A superior low-cost cathode for a Na-ion battery. Angewandte Chemie International Edition, 2013, 52(7): 1964–1967CrossRefPubMedGoogle Scholar
  15. 15.
    Deng W, Liang X, Wu X, Qian J, Cao Y, Ai X, Feng J, Yang H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Scientific Reports, 2013, 3: 2671CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angewandte Chemie International Edition, 2014, 53(38): 10169–10173CrossRefPubMedGoogle Scholar
  17. 17.
    Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12(3): 194CrossRefPubMedGoogle Scholar
  18. 18.
    Bommier C, Luo W, Gao W Y, Greaney A, Ma S, Ji X. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76(Supplement C): 165–174CrossRefGoogle Scholar
  19. 19.
    Yan C, Lv C, Zhu Y, Chen G, Sun J, Yu G. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Advanced Materials, 2017, 29(46): 1703909CrossRefGoogle Scholar
  20. 20.
    Wu Y, Nie P, Wu L, Dou H, Zhang X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334: 932–938CrossRefGoogle Scholar
  21. 21.
    Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 2015, 6: 6544CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Seo J W, Jang J T, Park S W, Kim C, Park B, Cheon J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Advanced Materials, 2008, 20(22): 4269–4273CrossRefGoogle Scholar
  23. 23.
    Zai J, Wang K, Su Y, Qian X, Chen J. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. Journal of Power Sources, 2011, 196(7): 3650–3654CrossRefGoogle Scholar
  24. 24.
    Huang Z X, Wang Y, Wong J I, Yang H Y. Free standing SnS2 nanosheets on 3D graphene foam: An outstanding hybrid nanostructure anode for Li-ion batteries. 2D Materials, 2015, 2(2): 024010CrossRefGoogle Scholar
  25. 25.
    Qu B, Ma C, Ji G, Xu C, Xu J, Meng Y S, Wang T, Lee J Y. Layered SnS2-reduced graphene oxide composite—a high-capacity, highrate, and long-cycle life sodium-ion battery anode material. Advanced Materials, 2014, 26(23): 3854–3859CrossRefPubMedGoogle Scholar
  26. 26.
    Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(24): 7181–7184CrossRefGoogle Scholar
  27. 27.
    Liu Y, Fang X, Ge M, Rong J, Shen C, Zhang A, Enaya H A, Zhou C. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy, 2015, 16: 399–407CrossRefGoogle Scholar
  28. 28.
    Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. SbC nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy & Environmental Science, 2014, 7(1): 323–328CrossRefGoogle Scholar
  29. 29.
    Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chemical Communications, 2012, 48(27): 3321–3323CrossRefPubMedGoogle Scholar
  30. 30.
    Prikhodchenko P V, Denis Y, Batabyal S K, Uvarov V, Gun J, Sladkevich S, Mikhaylov A A, Medvedev A G, Lev O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(22): 8431–8437CrossRefGoogle Scholar
  31. 31.
    Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Advanced Functional Materials, 2015, 25(2): 214–220CrossRefGoogle Scholar
  32. 32.
    Xu W, Zhao K, Zhang L, Xie Z, Cai Z, Wang Y. SnS2@graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. Journal of Alloys and Compounds, 2016, 654: 357–362CrossRefGoogle Scholar
  33. 33.
    Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100CrossRefPubMedGoogle Scholar
  34. 34.
    Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang J H, Zhao B, Liu M, Lin Z, Huang K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy & Environmental Science, 2017, 10(8): 1757–1763CrossRefGoogle Scholar
  35. 35.
    Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov S V, Lin J, Fan H J. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7: 12122CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ren W, Zhang H, Guan C, Cheng C. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Advanced Functional Materials, 2017, 27(32): 1702116CrossRefGoogle Scholar
  37. 37.
    Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R, Cho J, Wang H L, Wu G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Advanced Materials, 2014, 26(9): 1378–1386CrossRefPubMedGoogle Scholar
  38. 38.
    Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-organic framework materials as chemical sensors. Chemical Reviews, 2011, 112(2): 1105–1125CrossRefPubMedGoogle Scholar
  39. 39.
    Rowsell J L, Yaghi O M. Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 2004, 73(1–2): 3–14CrossRefGoogle Scholar
  40. 40.
    James S L. Metal-organic frameworks. Chemical Society Reviews, 2003, 32(5): 276–288CrossRefPubMedGoogle Scholar
  41. 41.
    Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano, 2015, 9(2): 1592–1599CrossRefPubMedGoogle Scholar
  42. 42.
    Neff V D. Some performance characteristics of a prussian blue battery. Journal of the Electrochemical Society, 1985, 132: 1382–1384CrossRefGoogle Scholar
  43. 43.
    Lu Y, Wang L, Cheng J, Goodenough J B. Prussian blue: A new framework of electrode materials for sodium batteries. Chemical Communications, 2012, 48(52): 6544–6546CrossRefPubMedGoogle Scholar
  44. 44.
    You Y, Wu X L, Yin Y X, Guo Y G. High-quality prussian blue crystals as superior cathode materials for room-temperature sodiumion batteries. Energy & Environmental Science, 2014, 7(5): 1643–1647CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Wen Y, Liu Y, Li D, Li J. Functionalization of single-walled carbon nanotubes with prussian blue. Electrochemistry Communications, 2004, 6(11): 1180–1184CrossRefGoogle Scholar
  46. 46.
    Jiang Y, Yu S, Wang B, Li Y, Sun W, Lu Y, Yan M, Song B, Dou S. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Advanced Functional Materials, 2016, 26(29): 5315–5321CrossRefGoogle Scholar
  47. 47.
    Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy & Environmental Science, 2016, 9(4): 1430–1438CrossRefGoogle Scholar
  48. 48.
    Lim Y V, Huang S, Zhang Y, Kong D, Wang Y, Guo L, Zhang J, Shi Y, Chen T P, Ang L K. Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Materials, 2018, 15: 98–107CrossRefGoogle Scholar
  49. 49.
    Zhai C, Du N, Yang H Z D. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical Communications, 2011, 47(4): 1270–1272CrossRefPubMedGoogle Scholar
  50. 50.
    Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W. Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm, 2012, 14(3): 832–836CrossRefGoogle Scholar
  51. 51.
    Kim T J, Kim C, Son D, Choi M, Park B. Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007, 167(2): 529–535CrossRefGoogle Scholar
  52. 52.
    Mukaibo H, Yoshizawa A, Momma T, Osaka T. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. Journal of Power Sources, 2003, 119: 60–63CrossRefGoogle Scholar
  53. 53.
    Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science, 2012, 5(1): 5226–5230CrossRefGoogle Scholar
  54. 54.
    Yue Y, Binder A J, Guo B, Zhang Z, Qiao Z A, Tian C, Dai S. Mesoporous prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angewandte Chemie International Edition, 2014, 53(12): 3134–3137CrossRefPubMedGoogle Scholar
  55. 55.
    Liu Y, Kang H, Jiao L, Chen C, Cao K, Wang Y, Yuan H. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7(4): 1325–1332CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang Y, Zhu P, Huang L, Xie J, Zhang S, Cao G, Zhao X. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Advanced Functional Materials, 2015, 25(3): 481–489CrossRefGoogle Scholar
  57. 57.
    Yang D, Xu J, Liao X Z, He Y S, Liu H, Ma Z F. Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries. Chemical Communications, 2014, 50(87): 13377–13380CrossRefPubMedGoogle Scholar
  58. 58.
    Nie P, Yuan J, Wang J, Le Z, Xu G, Hao L, Pang G, Wu Y, Dou H, Yan X. Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(24): 20306–20312CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Glenn J. Sim
    • 1
    • 2
  • Kakui Ma
    • 1
  • Zhixiang Huang
    • 1
  • Shaozhuan Huang
    • 1
  • Ye Wang
    • 1
    • 3
  • Huiying Yang
    • 1
    Email author
  1. 1.Pillar of Engineering Product DevelopmentSingapore University of Technology and DesignSingaporeSingapore
  2. 2.Airbus Group Innovations SingaporeSingaporeSingapore
  3. 3.Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations