Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Photothermal materials for efficient solar powered steam generation

Abstract

Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

References

  1. 1.

    Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310

  2. 2.

    Burheim O S, Seland F, Pharoah J G, Kjelstrup S. Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 2012, 285: 147–152

  3. 3.

    Mei Y, Tang C Y Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination, 2018, 425: 156–174

  4. 4.

    Huyskens C, Helsen J. de Haan A B. Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for differentions. Desalination, 2013, 328: 8–16

  5. 5.

    Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 2009, 43(9): 2317–2348

  6. 6.

    Sobana S, Panda R C. Review on modelling and control of desalination system using reverse osmosis. Reviews in Environmental Science and Biotechnology, 2011, 10(2): 139–150

  7. 7.

    Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Desalination, 2012, 287: 2–18

  8. 8.

    García-Rodríguez L, Gomez-Camacho C. Conditions for economical benefits of the use of solar energy in multi-stage flash distillation. Desalination, 1999, 125(1–3): 133–138

  9. 9.

    Zhao D F, Xue J L, Li S, Sun H, Zhang Q D. Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination, 2011, 273(2–3): 292–298

  10. 10.

    Alarcón-Padilla D C, Garcia-Rodriguez L. Application of absorption heat pumps to multi-effect distillation: A case study of solar desalination. Desalination, 2007, 212(1–3): 294–302

  11. 11.

    Farid M, Al-Hajaj A W. Solar desalination with a humidification-dehumidification cycle. Desalination, 1996, 106(1–3): 427–429

  12. 12.

    Khawaji A D, Kutubkhanah I K, Wie J M. Advances in seawater desalination technologies. Desalination, 2008, 221(1–3): 47–69

  13. 13.

    Jin H, Lin G, Bai L, Zeiny A, Wen D. Steam generation in a nanoparticle-based solar receiver. Nano Energy, 2016, 28: 397–406

  14. 14.

    Farokhnia N, Irajizad P, Sajadi S M, Ghasemi H. Rational micro/ nanostructuring for thin-film evaporation. Journal of Physical Chemistry C, 2016, 120(16): 8742–8750

  15. 15.

    Nagata Y, Usui K, Bonn M. Molecular mechanism of water evaporation. Physical Review Letters, 2015, 115(23): 236102

  16. 16.

    Gueymard C A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 2004, 76(4): 423–453

  17. 17.

    Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284

  18. 18.

    Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, Tanemura S. The emergence of solar thermal utilization: Solar-driven steam generation. Journal of Materials Chemistry. A, 2017, 5(17): 7691–7709

  19. 19.

    Meng X, Liu L, Ouyang S, Xu H, Wang D, Zhao N, Ye J. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photo-catalysis and photo-thermocatalysis. Advanced Materials, 2016, 28(32): 6781–6803

  20. 20.

    Chen H, Shao L, Li Q, Wang J. Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42(7): 2679–2724

  21. 21.

    Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek R A, Hafner J H, Lapotko D O. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano, 2010, 4(4): 2109–2123

  22. 22.

    Fang Z, Zhen Y R, Neumann O, Polman A, Garcia de Abajo F J, Nordlander P, Halas N J. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Letters, 2013, 13(4): 1736–1742

  23. 23.

    Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J. Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7(1): 42–49

  24. 24.

    Neumann O, Feronti C, Neumann A D, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11677–11681

  25. 25.

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645

  26. 26.

    Guo A, Fu Y, Wang G, Wang X. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Advances, 2017, 7(8): 4815–4824

  27. 27.

    Wang Z, Liu Y, Tao P, Shen Q, Yi N, Zhang F, Liu Q, Song C, Zhang D, Shang W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small, 2014, 10(16): 3234–3239

  28. 28.

    Liu Y, Yu S, Feng R, Bernard A, Liu Y, Zhang Y, Duan H, Shang W, Tao P, Song C. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Advanced Materials, 2015, 27(17): 2768–2774

  29. 29.

    Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779

  30. 30.

    Yu S, Zhang Y, Duan H, Liu Y, Quan X, Tao P, Shang W, Wu J, Song C, Deng T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific Reports, 2015, 5(1): 13600

  31. 31.

    Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103

  32. 32.

    Tian L, Luan J, Liu K K, Jiang Q, Tadepalli S, Gupta M K, Naik R R, Singamaneni S. Plasmonic biofoam: A versatile optically active material. Nano Letters, 2016, 16(1): 609–616

  33. 33.

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227

  34. 34.

    Zhou L, Zhuang S, He C, Tan Y, Wang Z, Zhu J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 2017, 32: 195–200

  35. 35.

    Liu C, Huang J, Hsiung C E, Tian Y, Wang J, Han Y, Fratalocchi A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017: 1600013

  36. 36.

    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

  37. 37.

    Wang H, Miao L, Tanemura S. Morphology control of A. polyhedron nanoparticles for cost-effective and fast solar steam generation. Solar RRL, 2017, 1(3–4): 1600023

  38. 38.

    Fang J, Liu Q, Zhang W, Gu J, Su Y, Su H, Guo C, Zhang D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry. A, 2017, 5(34): 17817–17821

  39. 39.

    Chen F, Gong A S, Zhu M, Chen G, Lacey S D, Jiang F, Li Y, Wang Y, Dai J, Yao Y. et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275–4282

  40. 40.

    Fang B, Yang C, Pang C, Shen W, Zhang X, Zhang Y, Yuan W, Liu X. Broadband light absorber based on porous alumina structure covered with ultrathin iridium film. Applied Physics Letters, 2017, 110(14): 141103

  41. 41.

    Zhang L, Xing J, Wen X, Chai J, Wang S, Xiong Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849

  42. 42.

    Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Solar steam generation by heat localization. Nature Communications, 2014, 5(1): 4449

  43. 43.

    Yin Z, Wang H, Jian M, Li Y, Xia K, Zhang M, Wang C, Wang Q, Ma M, Zheng Q S. et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Applied Materials & Interfaces, 2017, 9(34): 28596–28603

  44. 44.

    Selvakumar N, Krupanidhi S B, Barshilia H C. Carbon nanotube-based tandem absorber with tunable spectral selectivity: Transition from near-perfect blackbody absorber to solar selective absorber. Advanced Materials, 2014, 26(16): 2552–2557

  45. 45.

    Wang X, He Y, Cheng G, Shi L, Liu X, Zhu J. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management, 2016, 130: 176–183

  46. 46.

    Wang Y, Zhang L, Wang P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1223–1230

  47. 47.

    Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Advanced Materials, 2015, 27(29): 4302–4307

  48. 48.

    Zhang P, Li J, Lv L, Zhao Y, Qu L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano, 2017, 11(5): 5087–5093

  49. 49.

    Yang J, Pang Y, Huang W, Shaw S K, Schiffbauer J, Pillers M A, Mu X, Luo S, Zhang T, Huang Y. et al. Functionalized graphene enables highly efficient solar thermal steam generation. ACS Nano, 2017, 11(6): 5510–5518

  50. 50.

    Zhang L, Li R, Tang B, Wang P. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8(30): 14600–14607

  51. 51.

    Li X, Xu W, Tang M, Zhou L, Zhu B, Zhu S, Zhu J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953–13958

  52. 52.

    Jiang Q, Tian L, Liu K K, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Bilayered biofoam for highly efficient solar steam generation. Advanced Materials, 2016, 28(42): 9400–9407

  53. 53.

    Liu K K, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681

  54. 54.

    Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Advanced Materials, 2017, 29(38): 1702590

  55. 55.

    Wang Z, Ye Q, Liang X, Xu J, Chang C, Song C, Shang W, Wu J, Tao P, Deng T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry. A, 2017, 5(31): 16359–16368

  56. 56.

    Shi L, Wang Y, Zhang L, Wang P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry. A, 2017, 5(31): 16212–16219

  57. 57.

    Wang G, Fu Y, Ma X, Pi W, Liu D, Wang X. Reusable reduced graphene oxide based double-layer system modified by poly-ethylenimine for solar steam generation. Carbon, 2017, 114: 117–124

  58. 58.

    Zhang Y, Zhao D, Yu F, Yang C, Lou J, Liu Y, Chen Y, Wang Z, Tao P, Shang W. et al. Floating RGO-based black membranes for solar driven sterilization. Nanoscale, 2017, 9(48): 19384–19389

  59. 59.

    Liu Y, Chen J, Guo D, Cao M, Jiang L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Applied Materials & Interfaces, 2015, 7(24): 13645–13652

  60. 60.

    Liu Z, Song H, Ji D, Li C, Cheney A, Liu Y, Zhang N, Zeng X, Chen B, Gao J. et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Global Chall, 2017, 1(2): 1600003

  61. 61.

    Xu N, Hu X, Xu W, Li X, Zhou L, Zhu S, Zhu J. Mushrooms as efficient solar steam-generation devices. Advanced Materials, 2017, 29(28): 1606762

  62. 62.

    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T, Duan J, Qi B, Zhou J. Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Applied Materials & Interfaces, 2017, 9(17): 15052–15057

  63. 63.

    Wang J, Liu Z, Dong X, Hsiung C E, Zhu Y, Liu L, Han Y. Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. Journal of Materials Chemistry. A, 2017, 5(15): 6860–6865

  64. 64.

    Liu F, Zhao B, Wu W, Yang H, Ning Y, Lai Y, Bradley R. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation. Advanced Functional Materials, 2018, 28(47): 1803266

  65. 65.

    Zhang L, Tang B, Wu J, Li R, Wang P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Advanced Materials, 2015, 27(33): 4889–4894

  66. 66.

    Wu X, Chen G Y, Zhang W, Liu X, Xu H. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Advanced Sustainable Systems, 2017, 1(6): 1700046

  67. 67.

    Huang X, Yu Y H, de Llergo O L, Marquez S M, Cheng Z. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Advances, 2017, 7(16): 9495–9499

  68. 68.

    Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, Mendez S, Yang R, Qu L, Yu G. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13(6): 489–495

  69. 69.

    Chen Q, Pei Z, Xu Y, Li Z, Yang Y, Wei Y, Ji Y. A durable monolithic polymer foam for efficient solar steam generation. Chemical Science (Cambridge), 2018, 9(3): 623–628

  70. 70.

    Nikitenko S I, Chave T, Cau C, Brau H P, Flaud V. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core-shell nanoparticles under visible-NIR light irradiation. ACS Catalysis, 2015, 5(8): 4790–4795

  71. 71.

    Zhou Y, Doronkin D E, Zhao Z, Plessow P N, Jelic J, Detlefs B, Pruessmann T, Studt F, Grunwaldt J D. Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando hERFD-XANES, resonant XES, and DRIFTS. ACS Catalysis, 2018, 8(12): 11398–11406

  72. 72.

    Zhao Y, Waterhouse G I N, Chen G, Xiong X, Wu L Z, Tung C H, Zhang T. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010

  73. 73.

    Xu C, Huang W, Li Z, Deng B, Zhang Y, Ni M, Cen K. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2. ACS Catalysis, 2018, 8(7): 6582–6593

  74. 74.

    Li R, Zhang L, Shi L, Wang P. Mxene Ti3C2: A. effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759

  75. 75.

    Zhu G, Xu J, Zhao W, Huang F. Constructing black titania with unique nanocage structure for solar desalination. ACS Applied Materials & Interfaces, 2016, 8(46): 31716–31721

  76. 76.

    Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730

  77. 77.

    Ye M, Jia J, Wu Z, Qian C, Chen R, O’Brien P G, Sun W, Dong Y, Ozin G A. Synthesis of black tioxnanoparticles by mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials, 2017, 7(4): 1601811

  78. 78.

    Ding D, Huang W, Song C, Yan M, Guo C, Liu S. Non-stoichiometric MoO3 x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications, 2017, 53(50): 6744–6747

  79. 79.

    Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031

  80. 80.

    Sharma B, Rabinal M K. Plasmon based metal-graphene nanocomposites for effective solar vaporization. Journal of Alloys and Compounds, 2017, 690: 57–62

  81. 81.

    Fu Y, Mei T, Wang G, Guo A, Dai G, Wang S, Wang J, Li J, Wang X. Investigation on enhancing effects of A. nanoparticles on solar steam generation in graphene oxide nanofluids. Applied Thermal Engineering, 2017, 114: 961–968

  82. 82.

    Yang X, Yang Y, Fu L, Zou M, Li Z, Cao A, Yuan Q. A. ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation. Advanced Functional Materials, 2018, 28(3): 1704505

  83. 83.

    Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry. A, 2018, 6(3): 963–971

  84. 84.

    Yang Y, Yang X, Fu L, Zou M, Cao A, Du Y, Yuan Q, Yan C H. Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171

  85. 85.

    Taylor R A, Phelan P E, Adrian R J, Gunawan A, Otanicar T P. Characterization of light-induced, volumetric steam generation in nanofluids. International Journal of Thermal Sciences, 2012, 56: 1–11

  86. 86.

    Lenert A, Wang E N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy, 2012, 86(1): 253–265

  87. 87.

    Ni G, Miljkovic N, Ghasemi H, Huang X, Boriskina S V, Lin C T, Wang J, Xu Y, Rahman M M, Zhang T. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 2015, 17: 290–301

  88. 88.

    Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry. A, 2017, 5(37): 20044–20052

  89. 89.

    Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, Dasgupta N, Zhang W, Zhang D, Tao P. et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636

  90. 90.

    Yang P, Liu K, Chen Q, Li J, Duan J, Xue G, Xu Z, Xie W, Zhou J. Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 2017, 10(9): 1923–1927

  91. 91.

    Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu J Y. et al. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756

  92. 92.

    Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126

  93. 93.

    Zhu M, Li Y, Chen F, Zhu X, Dai J, Li Y, Yang Z, Yan X, Song J, Wang Y. et al. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028

  94. 94.

    Li X, Lin R, Ni G, Xu N, Hu X, Zhu B, Lv G, Li J, Zhu S, Zhu J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018, 5(1): 70–77

  95. 95.

    Wang Y, Wang C, Song X, Huang M, Megarajan S K, Shaukat S F, Jiang H. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. Journal of Materials Chemistry. A, 2018, 6(21): 9874–9881

  96. 96.

    Ni G, Zandavi S H, Javid S M, Boriskina S V, Cooper T A, Chen G. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science, 2018, 11(6): 1510–1519

  97. 97.

    Zhuang S, Zhou L, Xu W, Xu N, Hu X, Li X, Lv G, Zheng Q, Zhu S, Wang Z. et al. Tuning transpiration by interfacial solar absorber-leaf engineering. Advancement of Science, 2018, 5(2): 1700497

  98. 98.

    Morciano M, Fasano M, Salomov U, Ventola L, Chiavazzo E, Asinari P. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications. Scientific Reports, 2017, 7(1): 11970

  99. 99.

    Xue G, Chen Q, Lin S, Duan J, Yang P, Liu K, Li J, Zhou J. Highly efficient water harvesting with optimized solar thermal membrane distillation device. Global Challenges, 2018, 2(5–6): 1800001

  100. 100.

    Canbazoglu F M, Fan B, Kargar A, Vemuri K, Bandaru P R. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment. AIP Advances, 2016, 6(8): 085218

  101. 101.

    Huang Z, Li X, Yuan H, Feng Y, Zhang X. Hydrophobically modified nanoparticle suspensions to enhance water evaporation rate. Applied Physics Letters, 2016, 109(16): 161602

  102. 102.

    Zeng Y, Wang K, Yao J, Wang H. Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science, 2014, 116: 704–709

  103. 103.

    Cui L, Zhang P, Xiao Y, Liang Y, Liang H, Cheng Z, Qu L. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Advanced Materials, 2018, 30(22): 1706805

  104. 104.

    Zhu L, Gao M, Peh C K N, Wang X, Ho G W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Advanced Energy Materials, 2018, 8(16): 1702149

  105. 105.

    Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano, 2018, 5(5): 1078–1089

Download references

Acknowledgements

This work is supported by the Science and Technology Commission of Shanghai Municipality (STCSM) (Grant No. 17230732700), the Innovate UK (Grant No. 104013), the institutional strategic grant—Global Challenges Research Fund (GCRF), that City, University of London, receives from Research England, UK Research and Innovation (UKRI).

Author information

Correspondence to Binyuan Zhao or Weiping Wu.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Lai, Y., Zhao, B. et al. Photothermal materials for efficient solar powered steam generation. Front. Chem. Sci. Eng. 13, 636–653 (2019). https://doi.org/10.1007/s11705-019-1824-1

Download citation

Keywords

  • solar stream generation
  • plasmonics
  • porous carbon
  • photothermal materials
  • solar energy conversion efficiency
  • water vapor generation rate