Advertisement

Frontiers of Chemical Science and Engineering

, Volume 13, Issue 3, pp 444–457 | Cite as

Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks

  • Tingting Zhao
  • Niamat Ullah
  • Yajun Hui
  • Zhenhua LiEmail author
Research Article
Part of the following topical collections:
  1. The Future of Plasma Nanoscience

Abstract

Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO2 methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal—organic frameworks are discussed.

Keywords

plasma catalysis methane carbon dioxide VOCs metal—organic frameworks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mott-Smith H M. History of “plasmas”. Nature, 1971, 233(5316): 219–219CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348–368CrossRefGoogle Scholar
  3. 3.
    Hinokuma S, Misumi S, Yoshida H, Machida M. Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catalysis Science & Technology, 2015, 5(9): 4249–4257CrossRefGoogle Scholar
  4. 4.
    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kreesen G, Whitehead I C, Murphy A B, Gutsol A F, Starikovskaia S. The 2012 plasma roadmap. Journal of Physics. D, Applied Physics, 2012, 45(25): 253001CrossRefGoogle Scholar
  5. 5.
    Kim S H, Moon S Y, Park J Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Topics in Catalysis, 2017, 60(12): 812–822CrossRefGoogle Scholar
  6. 6.
    Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catalysis Today, 2002, 72(3-4): 173–184CrossRefGoogle Scholar
  7. 7.
    Wang Z Y, Liu C J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11: 277–293CrossRefGoogle Scholar
  8. 8.
    Liu C J, Li M Y, Wang J Q, Zhou X T, Guo Q T, Yan J M, Li Y Z. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348CrossRefGoogle Scholar
  9. 9.
    Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chemistry, 2005, 17(1): 69–77Google Scholar
  10. 10.
    Bian L, Zhang L, Xia R, Li Z H. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. Journal of Natural Gas Science and Engineering, 2015, 27: 1189–1194CrossRefGoogle Scholar
  11. 11.
    Fu T J, Huang C D, Lv J, Li Z H. Fischer-Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Science & Technology, 2014, 16(3): 232–238CrossRefGoogle Scholar
  12. 12.
    Park S, Choe W, Moon S Y, Yoo S J. Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Advances in Physics-X, 2018, 4(1): 1526114Google Scholar
  13. 13.
    Ouyang J, Li B, He F, Dai D. Nonlinear phenomena in dielectric barrier discharges: Pattern, striation and chaos. Plasma Science & Technology, 2018, 20(10): 103002CrossRefGoogle Scholar
  14. 14.
    Borra J P. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science, 2018, 125: 208–236CrossRefGoogle Scholar
  15. 15.
    Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X, Zuo Y R. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel, 2014, 128: 268–273CrossRefGoogle Scholar
  16. 16.
    Naseh M V, Khodadadi A A, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379CrossRefGoogle Scholar
  17. 17.
    Chen Q, Kaneko T, Hatakeyama R. Rapid synthesis of watersoluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 2012, 521: 113–117CrossRefGoogle Scholar
  18. 18.
    Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation. Catalysis Today, 2013, 211: 104–108CrossRefGoogle Scholar
  19. 19.
    Liu C J, Zhao Y, Li Y Z, Zhang D S, Chang Z, Bu X H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3–13CrossRefGoogle Scholar
  20. 20.
    Ohkubo Y, Hamaguchi Y, Seino S, Nakagawa T, Kageyama S, Kugai J, Nitani H, Ueno K, Yamamoto T A. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 2013, 48(14): 5047–5054CrossRefGoogle Scholar
  21. 21.
    Pastor-Perez L, Belda-Alcazar V, Marini C, Pastor-Blas M M, Sepulveda-Escribana A, Ramos-Fernandez E V. Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in watergas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225: 121–127CrossRefGoogle Scholar
  22. 22.
    Liu C, Lan J P, Sun F L, Zhang Y H, Li J L, Hong J P. Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer-Tropsch catalysts. RSC Advances, 2016, 6(62): S7701–S7708Google Scholar
  23. 23.
    Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Jang B W L, Liu C J. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110CrossRefGoogle Scholar
  25. 25.
    Sadakiyo M, Heima M, Yamamoto T, Matsumura S, Matsuura M, Sugimoto S, Kato K, Takata M, Yamauchi M. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions (Cambridge, England), 2015, 44(36): 15764–15768CrossRefGoogle Scholar
  26. 26.
    Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. Rod packings and metal-organic frameworks constructed from rodshaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518CrossRefPubMedGoogle Scholar
  27. 27.
    Gilman A B, Piskarev M S, Kuznetsov A A, Ozerin A N. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma. High Energy Chemistry, 2017, 51(2): 136–144CrossRefGoogle Scholar
  28. 28.
    Sun Y P, Nie Y, Yuan J, Wu A S, Shen J L, Ji D X, Yu F W, Ji J B. Application of plasma technology in the reaction of methane carbon dioxide reforming to syngas. Chemical Industry and Engineering Progress, 2010, 29(S1): 295–300Google Scholar
  29. 29.
    Chung W C, Chang M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renewable & Sustainable Energy Reviews, 2016, 62: 13–31CrossRefGoogle Scholar
  30. 30.
    Zhou T, Jang K, Jang B W L. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catalysis Today, 2013, 211: 147–155CrossRefGoogle Scholar
  31. 31.
    Zhou C M, Wang X, Jia X L, Wang H P, Liu C J, Yang Y H. Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. Electrochemistry Communications, 2012, 18: 33–36CrossRefGoogle Scholar
  32. 32.
    Platonov E A, Bratchikova I G, Yagodovskii V D, Murga Z V. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment. Russian Journal of Physical Chemistry A, 2017, 91(8): 1422–1426CrossRefGoogle Scholar
  33. 33.
    Wu Y W, Chung W C, Chang M B. Modification of Ni/gamma-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen. International Journal of Hydrogen Energy, 2015, 40(25): 8071–8080CrossRefGoogle Scholar
  34. 34.
    Zhu B, Jang BWL. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144CrossRefGoogle Scholar
  35. 35.
    Movasati A, Alavi S M, Mazloom G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel, 2019, 236: 1254–1262CrossRefGoogle Scholar
  36. 36.
    Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2018, 239: 324–333CrossRefGoogle Scholar
  37. 37.
    Li Z, Das S, Hongmanorom P, Dewangan N, Wai M H, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology, 2018, 8(11): 2763–2778CrossRefGoogle Scholar
  38. 38.
    Tu X, Whitehead J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39(18): 9658–9669CrossRefGoogle Scholar
  39. 39.
    Lim M S, Chun Y N. Carbon dioxide destruction with methane reforming by a novel plasma-catalytic converter. Plasma Chemistry and Plasma Processing, 2016, 36(5): 1211–1228CrossRefGoogle Scholar
  40. 40.
    Li X S, Zhu B, Shi C, Xu Y, Zhu A M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(10): 2854–2860CrossRefGoogle Scholar
  41. 41.
    Zhou Z P, Zhang J M, Ye T H, Zhao P H, Xia W D. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. Chinese Science Bulletin, 2011, 56(20): 2162–2166CrossRefGoogle Scholar
  42. 42.
    Li X, Tao X M, Yin Y X. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Transactions on Plasma Science, 2009, 37(6): 759–763CrossRefGoogle Scholar
  43. 43.
    Jo S, Lee D H, Song Y H. Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 2015, 130: 101–108CrossRefGoogle Scholar
  44. 44.
    Park S, Lee M, Bae J, Hong D Y, Park Y K, Hwang Y K, Jeong M G, Kim Y D. Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor. Topics in Catalysis, 2017, 60(9-11): 735–742CrossRefGoogle Scholar
  45. 45.
    Ray D, Reddy P M K, Challapalli S. Glass beads packed DBD-plasma assisted dry reforming of methane. Topics in Catalysis, 2017, 60(12-14): 869–878CrossRefGoogle Scholar
  46. 46.
    Zhang K, Mukhriza T, Liu X T, Greco P P, Chiremba E. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges. Applied Catalysis A, General, 2015, 502: 138–149CrossRefGoogle Scholar
  47. 47.
    Zheng X G, Tan S Y, Dong L C, Li S B, Chen H M, Wei S A. Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 2015, 137: 250–258CrossRefGoogle Scholar
  48. 48.
    Chung W C, Tsao I Y, Chang M B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Conversion and Management, 2018, 164: 417–428CrossRefGoogle Scholar
  49. 49.
    Xia Y, Lu N, Wang B, Li J, Shang K, Jiang N, Wu Y. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42 (36): 22776–22785CrossRefGoogle Scholar
  50. 50.
    Montoro-Damas A M, Brey J J, Rodríguez MA, Gonzalez-Elipe A R, Cotrino J. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296: 268–275CrossRefGoogle Scholar
  51. 51.
    Jin L J, Li Y, Feng Y Q, Hu H Q, Nu A M. Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma. Journal of Analytical and Applied Pyrolysis, 2017, 126: 194–200CrossRefGoogle Scholar
  52. 52.
    Mustafa M F, Fu X D, Lu W J, Liu Y J, Abbas Y, Wang H T, Arslan M T. Application of non-thermal plasma technology on fugitive methane destruction: Configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 2018, 174: 670–677CrossRefGoogle Scholar
  53. 53.
    Nguyen H H, Nasonova A, Nah I W, Kim K S. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 2015, 32: 58–62CrossRefGoogle Scholar
  54. 54.
    Wang B W, Sun Q M, Lu Y J, Yang M L, Yan W J. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chinese Journal of Chemical Engineering, 2014, 22(1): 104–112CrossRefGoogle Scholar
  55. 55.
    Iwarere S A, Rohani V J, Ramjugernath D, Fulcheri L. Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40(8): 3388–3401CrossRefGoogle Scholar
  56. 56.
    Xu G H, Jiang E Y, Sheng J. Technology and application of plasma. Beijing: Chemical Industry Press, 2006: 1–242 (in Chinese)Google Scholar
  57. 57.
    Yap D, Tatibouet J M, Batiot-Dupeyrat C. Catalyst assisted by nonthermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299: 263–271CrossRefGoogle Scholar
  58. 58.
    Sentek J, Krawczyk K, Mlotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K H, Schmidt-Szalowski K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 2010, 94(1-2): 19–26CrossRefGoogle Scholar
  59. 59.
    Kim J, Abbott M S, Go D B, Hicks J C. Enhancing C–H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Letters, 2016, 1(1): 94–99CrossRefGoogle Scholar
  60. 60.
    Snoeckx R, Aerts R, Tu X, Bogaerts A. Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117 (10): 4957–4970CrossRefGoogle Scholar
  61. 61.
    Kim H H, Teramoto Y, Negishi N, Ogata A. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 2015, 256: 13–22CrossRefGoogle Scholar
  62. 62.
    Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J, Allen M R. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242): 1158–1162CrossRefPubMedGoogle Scholar
  63. 63.
    Matthews H D, Gillett N P, Stott P A, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459(7248): 829–832CrossRefPubMedGoogle Scholar
  64. 64.
    Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith S J, Janetos A, Edmonds J. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324 (5931): 1183–1186CrossRefPubMedGoogle Scholar
  65. 65.
    Lu Y W, Yan Q G, Han J, Cao B B, Street J, Yu F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193: 369–384CrossRefGoogle Scholar
  66. 66.
    Foit S R, Vinke I C, de Haart L G J, Eichel R A. Power-to-syngas: An enabling technology for the transition of the energy system? Angewandte Chemie International Edition, 2017, 56(20): 5402–5411CrossRefPubMedGoogle Scholar
  67. 67.
    Wang L, Yi Y H, Guo H C, Tu X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100CrossRefGoogle Scholar
  68. 68.
    Saeidi S, Amin N A S, Rahimpour M R. Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81CrossRefGoogle Scholar
  69. 69.
    Federsel C, Jackstell R, Beller M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angewandte Chemie International Edition, 2010, 49(36): 6254–6257CrossRefPubMedGoogle Scholar
  70. 70.
    Dimitriou I, Garcia-Gutierrez P, Elder R H, Cuellar-France R M, Azapagic A, Allen R W K. Carbon dioxide utilisation for production of transport fuels: Process and economic analysis. Energy & Environmental Science, 2015, 8(6): 1775–1789CrossRefGoogle Scholar
  71. 71.
    Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1): 33–52CrossRefGoogle Scholar
  72. 72.
    Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic-hydrogen of carbon dioxide. Nature, 1994, 368(6468): 231–233CrossRefGoogle Scholar
  73. 73.
    Alexmills G, Steffgen F. Catalytic methanation. Catalysis Reviews, 1974, 8(1): 159–210CrossRefGoogle Scholar
  74. 74.
    Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 34015–34016CrossRefGoogle Scholar
  75. 75.
    Pinhão N R, Janeco A, Branco J B. Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2011, 31(3): 427–439CrossRefGoogle Scholar
  76. 76.
    Eliasson B, Kogelschatz U, Xue B Z, Zhou L M. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357CrossRefGoogle Scholar
  77. 77.
    Gómez-Ramírez A, Rico V J, Cotrino J, Gonzalez-Elipe A, Lambert R M. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 2014, 4(2): 402–408CrossRefGoogle Scholar
  78. 78.
    Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044CrossRefGoogle Scholar
  79. 79.
    Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763CrossRefGoogle Scholar
  80. 80.
    van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers WA, Engeln R, Graswinckel M F, Zoethout E, de Sandena M C M V. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248CrossRefPubMedGoogle Scholar
  81. 81.
    Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Green P W, et al. Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126CrossRefGoogle Scholar
  82. 82.
    Silva T, Britun N, Godfroid T, Snyders R. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 217–221CrossRefGoogle Scholar
  83. 83.
    Spencer L F, Gallimore A D. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology, 2013, 22(1): 015019CrossRefGoogle Scholar
  84. 84.
    Ramakers M, Trenchev G, Heijkers S, Wang W Z, Bogaerts A. Gliding arc plasmatron: Providing an alternative method for carbon dioxide conversion. ChemSusChem, 2017, 10(12): 2642–2652CrossRefPubMedGoogle Scholar
  85. 85.
    Li K, Liu J L, Li X S, Zhu X B, Zhu A M. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288: 671–679CrossRefGoogle Scholar
  86. 86.
    Liu J L, Park H W, Chung W J, Ahn W S, Park D W. Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285: 243–251CrossRefGoogle Scholar
  87. 87.
    Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437–449CrossRefGoogle Scholar
  88. 88.
    Shapoval V, Marotta E, Ceretta C, Konjevic N, Ivkovic M, Schiorlin M, Paradisi C. Development and testing of a selftriggered spark reactor for plasma driven dry reforming of methane. Plasma Processes and Polymers, 2014, 11(8): 787–797CrossRefGoogle Scholar
  89. 89.
    Zhu B, Li X S, Shi C, Liu J L, Zhao T L, Zhu A M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37(6): 4945–4954CrossRefGoogle Scholar
  90. 90.
    Zhu B, Li X S, Liu J L, Zhu X B, Zhu A M. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264: 445–452CrossRefGoogle Scholar
  91. 91.
    Lee C J, Lee D H, Kim T. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catalysis Today, 2017, 293: 97–104CrossRefGoogle Scholar
  92. 92.
    Nizio M, Benrabbah R, Krzak M, Debek R, Motak M, Caavadias S, Galvez M E, Da Costa P. Low temperature hybrid plasmacatalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83: 14–17CrossRefGoogle Scholar
  93. 93.
    Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E, Da Costa P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 2016, 41(27): 11584–11592CrossRefGoogle Scholar
  94. 94.
    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67CrossRefGoogle Scholar
  95. 95.
    Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofmann-Caris R C H M, Maric D, Reid J P, Ceriani E, et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 1–125CrossRefGoogle Scholar
  96. 96.
    Bruggeman P J, Czarnetzki U. Retrospective on ‘The 2012 Plasma Roadmap’. Journal of Physics. D, Applied Physics, 2016, 49(43): 431001CrossRefGoogle Scholar
  97. 97.
    Aziz M A A, Jalil A A, Triwahyono S, Mukti R R, Taufiq-Yap Y H, Sazegar M R. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147: 359–368CrossRefGoogle Scholar
  98. 98.
    Ren J, Guo H L, Yang J Y, Qin Z F, Lin J Y, Li Z. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 2015, 351: 504–516CrossRefGoogle Scholar
  99. 99.
    Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472CrossRefGoogle Scholar
  100. 100.
    Upham D C, Derk A R, Sharma S, Metiu H, McFarland E W. CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface. Catalysis Science & Technology, 2015, 5(3): 1783–1791CrossRefGoogle Scholar
  101. 101.
    Azzolina-Jury F, Bento D, Henriques C, Thibault-Starzyk F. Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 2017, 22: 97–109CrossRefGoogle Scholar
  102. 102.
    Jiang Q, Lin Q, Huang Z T. Study on carbon dioxide methanation catalyst III. Catalytic reaction mechanism under the action of Ni-Ru-rare earth/ZrO2. Journal of Catalysis, 1997, (3): 189–139 (in Chinese)Google Scholar
  103. 103.
    Jwa E, Lee S B, Lee H W, Mok Y S. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 2013, 108: 89–93CrossRefGoogle Scholar
  104. 104.
    Speckmann F W, Mueller D, Koehler J, Birke K P. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor. Journal of CO2 Utilization, 2017, 19: 130–136CrossRefGoogle Scholar
  105. 105.
    Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 2015, 8(4): 702–716CrossRefPubMedGoogle Scholar
  106. 106.
    Azzolina-Jury F, Thibault-Starzyk F. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Topics in Catalysis, 2017, 60 (19): 1709–1721CrossRefGoogle Scholar
  107. 107.
    Yan X L, Bao J H, Zhao B R, Yuan C, Hu T, Huang C F, Li Y N. CO dissociation on Ni/SiO2: The formation of different carbon materials. Topics in Catalysis, 2017, 60(12-14): 890–897CrossRefGoogle Scholar
  108. 108.
    Dai B, Gong W M, Zhang X L, Zhang L, He R. Studies on methanation of CO2 under synergism plasma with catalyst. Chemical Journal of Chinese Universities, 2001, 22(5): 817–820 (in Chinese)Google Scholar
  109. 109.
    Jing L, Li Z H. Conversion of natural gas to C hydrocarbons via cold plasma technology. Journal of Energy Chemistry, 2010, 19(4): 375–379Google Scholar
  110. 110.
    Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Methane conversion to C2 and higher hydrocarbons via dielectric-barrier discharge plasma at atmospheric pressure. Chemical Reaction Engineering & Technology, 2006, 22(4): 356–360Google Scholar
  111. 111.
    Lee D H, Song Y H, Kim K T, Lee J O. Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 2013, 33(4): 647–661CrossRefGoogle Scholar
  112. 112.
    Zhang X L, Di L B, Zhou Q. Methane conversion under cold plasma over Pd-containing ionic liquids immobilized on gamma-Al2O3. Journal of Energy Chemistry, 2013, 22(3): 446–450CrossRefGoogle Scholar
  113. 113.
    Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chemistry, 2002, 4(2): 73–80CrossRefGoogle Scholar
  114. 114.
    Nozaki T, Hattori A, Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 2004, 98(4): 607–616CrossRefGoogle Scholar
  115. 115.
    Wang D W, Ma T C. Catalytic methane coupling of C2 hydrocarbons by glow discharge plasma. Nuclear Fusion and Plasma Physics, 2006, 4: 327–330 (in Chinese)Google Scholar
  116. 116.
    Goujard V, Tatibouët J M, Batiot-Dupeyrat C. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: Effect of helium dilution and kinetic model. Plasma Chemistry and Plasma Processing, 2011, 31(2): 315–325CrossRefGoogle Scholar
  117. 117.
    Thanyachotpaiboon K, Chavadej S, Caldwell T A, Lobban L L, Mallinson R G. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(10): 2252–2257CrossRefGoogle Scholar
  118. 118.
    Zhang A J, Zhu A M, Guo J, Xu Y, Shi C. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156 (3): 601–606CrossRefGoogle Scholar
  119. 119.
    Jo S, Lee D H, Kang S, Song Y H. Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 2013, 20(8): 14–31CrossRefGoogle Scholar
  120. 120.
    Jo S, Lee D H, Kim K T, Kang WS, Song Y H. Methane activation using Kr and Xe in a dielectric barrier discharge reactor. Physics of Plasmas, 2014, 21(10): 14–31CrossRefGoogle Scholar
  121. 121.
    Sudnick J J, Corwin D L. VOC control techniques. Hazardous Waste & Hazardous Materials, 1994, 11(1): 129–143CrossRefGoogle Scholar
  122. 122.
    Keller R A, Dyer J A. Abating halogenated VOCs. Chemical Engineering (Albany, N.Y.), 1998, 105(1): 100–105Google Scholar
  123. 123.
    Kim H H, Ogata A, Futamura S. Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science & Technology, 2007, 1: 46–51Google Scholar
  124. 124.
    Dyer J A, Mulholland K. Toxic air emissions. What is the full cost to your business? Chemical Engineering Environmental Engineering, 1994, 101 (S2):4–8Google Scholar
  125. 125.
    Okubo M, Yamamoto T, Kuroki T, Fukumoto H. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Transactions on Industry Applications, 2001, 37 (5): 1505–1511CrossRefGoogle Scholar
  126. 126.
    Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 2005, 25(3): 227–243CrossRefGoogle Scholar
  127. 127.
    Ohshima T, Kondo T, Kitajima N, Sato M. Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 2010, 46 (1): 23–28CrossRefGoogle Scholar
  128. 128.
    Vandenbroucke A, Mora M, Morent R, De Geyter N, Leys C. TCE abatement with a plasma-catalysis combined system using MnO2 as catalyst. 21st International Symposium on Plasma Chemistry, 2013, 156: 94–100Google Scholar
  129. 129.
    Dinh M T N, Giraudon J M, Lamonier J F, Vandenbroucke A, De Geyter N, Leys C, Morent R. Plasma-catalysis of low TCE concentration in air using LaMnO3+δ as catalyst. Applied Catalysis B: Environmental, 2014, 147(147): 904–911CrossRefGoogle Scholar
  130. 130.
    Assadi A A, Bouzaza A, Vallet C, Wolbert D. Use of DBD plasma,photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254(13): 124–132CrossRefGoogle Scholar
  131. 131.
    Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1): 9–15CrossRefGoogle Scholar
  132. 132.
    Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 1996, 32(1): 100–105CrossRefGoogle Scholar
  133. 133.
    Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 1999, 19(3): 383–394CrossRefGoogle Scholar
  134. 134.
    Ogata A, Ito D, Mizuno K, Kushiyamaet S, Yamamoto T. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 2001, 37(4): 959–964CrossRefGoogle Scholar
  135. 135.
    Oh S M, Kim H H, Einaga H, Ogata A, Futamura S, Park D W. Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 2006, 506-507: 418–422CrossRefGoogle Scholar
  136. 136.
    Kuroki T, Hirai K, Matsuoka S, Kim J Y, Okubo M. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow. IEEE Transactions on Industry Applications, 2011, 47(4): 1916–1921CrossRefGoogle Scholar
  137. 137.
    Feng F D, Zheng Y Y, Shen X J, Zheng Q Z, Dai S L, Zhang X M, Huang Y F, Liu Z, Yan K P. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environmental Science & Technology, 2015, 49(11): 6831–6837CrossRefGoogle Scholar
  138. 138.
    Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R. Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 2015, 5(2): 718–746CrossRefGoogle Scholar
  139. 139.
    Schiavon M, Torretta V, Casazza A, Ragazzi M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water, Air, and Soil Pollution, 2017, 228(10): 388CrossRefGoogle Scholar
  140. 140.
    Vandenbroucke A M, Morent R, De Geyter N, Leys C. Nonthermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195: 30–54CrossRefPubMedGoogle Scholar
  141. 141.
    Feng X X, Liu H X, He C, Shen Z X, Wang T B. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catalysis Science & Technology, 2018, 8(4): 936–954CrossRefGoogle Scholar
  142. 142.
    Yang F, Li Y F, Liu T, Xu K, Zhang L Q, Xu C M, Gao J S. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chemical Engineering Journal, 2013, 226: 52–58CrossRefGoogle Scholar
  143. 143.
    Liang H F, Gandi A N, Anjum D H,Wang X B, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725CrossRefPubMedGoogle Scholar
  144. 144.
    Wang S Y, Wang X Y, Wang L, Pu Q S, Du W B, Guo G S. Plasma-assisted alignment in the fabrication of microchannelarray- based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Analytica Chimica Acta, 2018, 1018: 70–77CrossRefPubMedGoogle Scholar
  145. 145.
    Li S J, Li L L, Chen Z, Xue G P, Jiang L G, Zheng K, Chen J C, Li R, Yuan C, Huang M D. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149: 37–42CrossRefPubMedGoogle Scholar
  146. 146.
    Cong Z, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194: 80–86CrossRefGoogle Scholar
  147. 147.
    Cogal S, Ela S E, Ali A K, Cogal G C, Micusik M, Omastova M, Oksuz A U. Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Research on Chemical Intermediates, 2018, 44(5): 3325–3335CrossRefGoogle Scholar
  148. 148.
    Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 8081–8086CrossRefGoogle Scholar
  149. 149.
    Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-organic frameworks for heterogeneous basic catalysis. Chemical Reviews, 2017, 117(12): 8129–8176CrossRefPubMedGoogle Scholar
  150. 150.
    Jing P, Zhang S Y, Chen W J, Wang L, Shi W, Cheng P. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chemistry-a European Journal, 2018, 24(15): 3754–3759CrossRefGoogle Scholar
  151. 151.
    Carrasco J A, Romero J, Abellan G, Hernandez-Saz J, Molina S I, Marti-Gastaldo C, Coronado E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144CrossRefPubMedGoogle Scholar
  152. 152.
    Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. H5PV2Mo10O40 encapsulated in MIL-101(Cr): Facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions (Cambridge, England), 2018, 47(18): 6394–6403CrossRefGoogle Scholar
  153. 153.
    Zhen W L, Li B, Lu G X, Ma J T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chemical Communications, 2015, 51(9): 1728–1731CrossRefPubMedGoogle Scholar
  154. 154.
    Li Y J, Miao J P, Sun X J, Xiao J, Li Y W,Wang H H, Xia Q B, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298: 191–197CrossRefGoogle Scholar
  155. 155.
    Zeng L, Xiao L, Long Y K, Shi X W. Trichloroacetic acidmodulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516: 274–283CrossRefPubMedGoogle Scholar
  156. 156.
    Sadakiyo M, Yoshimaru S, Kasai H, Kato K, Takata M, Yamauchi M. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52(54): 8385–8388CrossRefPubMedGoogle Scholar
  157. 157.
    Park K S, Ni Z, Côté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309 (5743): 2040–2042CrossRefPubMedGoogle Scholar
  159. 159.
    Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud K P, Tilset M. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20 (44): 9848–9851CrossRefGoogle Scholar
  160. 160.
    Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M. Hydrogen dissociation by gold clusters. Angewandte Chemie, 2009, 121(50): 9679–9682CrossRefGoogle Scholar
  161. 161.
    Bahri M, Haghighat F, Rohani S, Kazemian H. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 2017, 320: 308–318CrossRefGoogle Scholar
  162. 162.
    Li B H, Yu T H, Weng C Y, Yang C C, Lin C H, Lee S. Thermal and plasma synthesis of metal oxide nanoparticles from MOFs with SERS characterization. Vibrational Spectroscopy, 2016, 84: 146–152CrossRefGoogle Scholar
  163. 163.
    Dou S, Dong C L, Hu Z, Huang Y C, Chen J L, Tao L, Yan D F, Chen D W, Shen C H, Chou S L, et al. Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Advanced Functional Materials, 2017, 27(36): 1702546CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tingting Zhao
    • 1
  • Niamat Ullah
    • 1
  • Yajun Hui
    • 1
  • Zhenhua Li
    • 1
    Email author
  1. 1.Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina

Personalised recommendations