Advertisement

Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition

  • Ana Mora-Boza
  • Francisco J. AparicioEmail author
  • María Alcaire
  • Carmen López-Santos
  • Juan P. Espinós
  • Daniel Torres-Lagares
  • Ana Borrás
  • Angel BarrancoEmail author
Research Article
  • 8 Downloads

Abstract

Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against Escherichia coli K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.

Keywords

plasma polymers conformal plasma deposition chlorhexidine bactericide PDMS biocompatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Ministerio de Economía y Competitividad of Spain, the Agencia Estatal de Investigación (AEI) and EU (FEDER program) under grant MAT2016-79866-R.

References

  1. 1.
    Cavallaro A A, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Applied Materials & Interfaces, 2016, 8(10): 6354–6362Google Scholar
  2. 2.
    Vähä-Nissi M, Pitkänen M, Salo E, Kenttä E, Tanskanen A, Sajavaara T, Putkonen M, Sievänen J, Sneck A, Rättö M, Karppinen M, Harlin A. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures. Thin Solid Films, 2014, 562: 331–337Google Scholar
  3. 3.
    Zhang B, Myers D, Wallace G, Brandt M, Choong P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. International Journal of Molecular Sciences, 2014, 15(7): 11878–11921Google Scholar
  4. 4.
    Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718Google Scholar
  5. 5.
    Gilabert-Porres J, Martí S, Calatayud L, Ramos V, Rosell A, Borrós S. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Applied Materials & Interfaces, 2016, 8(1): 64–73Google Scholar
  6. 6.
    Jiang F, Yeh C K, Wen J, Sun Y. N-Trimethylchitosan/alginate layer-by-layer self assembly coatings act as ‘fungal repellents’ to prevent biofilm formation on healthcare materials. Advanced Healthcare Materials, 2015, 4(3): 469–475Google Scholar
  7. 7.
    Li L, Pu T, Zhanel G, Zhao N, Ens W, Liu S. New biocide with both n-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 2012, 1(5): 609–620Google Scholar
  8. 8.
    Wu M, He J, Ren X, Cai WS, Fang Y C, Feng X Z. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 700–706Google Scholar
  9. 9.
    Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16: 1–13Google Scholar
  10. 10.
    Agarwal A, Nelson T B, Kierski P R, Schurr M J, Murphy C J, Czuprynski C J, McAnulty J F, Abbott N L. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33(28): 6783–6792Google Scholar
  11. 11.
    He T, Zhang Y, Lai A C K, Chan V. Engineering bio-adhesive functions in an antimicrobial polymer multilayer. Biomedical Materials (Bristol, England), 2015, 10(1): 15015Google Scholar
  12. 12.
    Verraedt E, Braem A, Chaudhari A, Thevissen K, Adams E, Van Mellaert L, Cammue B P A, Duyck J, Anné J, Vleugels J, Martens J A. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419(1-2): 28–32Google Scholar
  13. 13.
    Yu Q, Ge W, Atewologun A, Stiff-Roberts A D, López G P. Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 328–334Google Scholar
  14. 14.
    Chang C H, Yeh S Y, Lee B H, Hsu C W, Chen Y C, Chen C J, Lin T J, Chen M H C, Huang C T, Chen H Y. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(48): 8496–8503Google Scholar
  15. 15.
    Nikiforov A Y, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, De Geyter N, Morent R, Leys C. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. European Physical Journal Applied Physics, 2016, 75(2): 24710Google Scholar
  16. 16.
    Ostrikov K, Levchenko I, Keidar M, Cvelbar U, Mariotti D, Mai-Prochnow A, Fang J. Novel biomaterials: Plasma-enabled nanostructures and functions. Journal of Physics. D, Applied Physics, 2016, 49(27): 273001Google Scholar
  17. 17.
    Barranco A, Groening P. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules. Langmuir, 2006, 22(16): 6719–6722Google Scholar
  18. 18.
    Barranco A, Aparicio F, Yanguas-Gil A, Groening P, Cotrino J, González-Elipe A R. Optically active thin films deposited by plasma polymerization of dye molecules. Chemical Vapor Deposition, 2007, 13(6-7): 319–325Google Scholar
  19. 19.
    Aparicio F J, Holgado M, Borras A, Blaszczyk-Lezak I, Griol A, Barrios C A, Casquel R, Sanza F J, Sohlstrom H, Antelius M, González-Elipe A R, Barranco A. Transparent nanometric organic luminescent films as UV-active components in photonic structures. Advanced Materials, 2011, 23(6): 761–765Google Scholar
  20. 20.
    Aparicio F J, Alcaire M, González-Elipe A R, Barranco A, Holgado M, Casquel R, Sanza F J, Griol A, Bernier D, Dortu F, Cáceres S, Antelius M, Lapisa M, Sohlström H, Niklaus F. Dye-based photonic sensing systems. Sensors and Actuators. B, Chemical, 2016, 228: 649–657Google Scholar
  21. 21.
    Blaszczyk-Lezak I, Aparicio F J, Borrás A, Barranco A, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R. Optically active luminescent perylene thin films deposited by plasma polymerization. Journal of Physical Chemistry C, 2009, 113(1): 431–438Google Scholar
  22. 22.
    Aparicio F J, Alcaire M, Borras A, Gonzalez J C, López-Arbeloa F, Blaszczyk-Lezak I, González-Elipe A R, Barranco A. Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(32): 6561–6573Google Scholar
  23. 23.
    Sangamesh K, Laurencin C, Deng M, eds. Natural and Synthetic Biomedical Polymers. San Diego: Elsevier, 2014, 301–308Google Scholar
  24. 24.
    Chen H, Brook M A, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25(12): 2273–2282Google Scholar
  25. 25.
    Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8 (4): 270–280Google Scholar
  26. 26.
    Gilbert P, Allison D G, Brading M, Verran J, Walker J. Biofilm community interactions: Chance or necessity? Cardiff: Bioline, 2001, 11–22Google Scholar
  27. 27.
    Wilson C J, Clegg R E, Leavesley D I, Pearcy M J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11(1-2): 1–18Google Scholar
  28. 28.
    Zhang H, Chiao M. Anti-fouling Coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 2014, 35(2): 143–155Google Scholar
  29. 29.
    Larson B J, Gillmor S D, Braun J M, Cruz-Barba L E, Savage D E, Denes F S, Lagally M G. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir, 2013, 29(42): 12990–12996Google Scholar
  30. 30.
    Forster S, McArthur S L. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. Biomicrofluidics, 2012, 6(3): 036504Google Scholar
  31. 31.
    Lee D, Yang S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators. B, Chemical, 2012, 162(1): 425–434Google Scholar
  32. 32.
    Kaelble D H. Dispersion-polar surface tension properties of organic solids. Journal of Adhesion, 1970, 2(2): 66–81Google Scholar
  33. 33.
    Owens D K, Wendt R C. Estimation of the surface free energy or polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747Google Scholar
  34. 34.
    Balouiri M, Sadiki M, Ibnsouda S K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79Google Scholar
  35. 35.
    Mestieri L B, Gomes-Cornélio A L, Rodrigues E M, Faria G, Guerreiro-Tanomaru J M, Tanomaru-Filho M. Cytotoxicity and bioactivity of calcium silicate cements combined with niobium oxide in different cell lines. Brazilian Dental Journal, 2017, 28(1): 65–71Google Scholar
  36. 36.
    Aparicio F J, Borras A, Blaszczyk-Lezak I, Gröning P, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R, Barranco A. Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6(1): 17–26Google Scholar
  37. 37.
    Aparicio F J, Blaszczyk-Lezak I, Sánchez-Valencia J R, Alcaire M, González J C, Serra C, González-Elipe A R, Barranco A. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. Journal of Physical Chemistry C, 2012, 116(15): 8731–8740Google Scholar
  38. 38.
    Beamson G, Briggs D. High Resolution XPS of Organic Polymers. New York: John Wiley & Sons Ltd., 1990, 277–287Google Scholar
  39. 39.
    Yim J H, Fleischman M S, Rodriguez-Santiago V, Piehler L T, Williams A A, Leadore J L, Pappas D D. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Applied Materials & Interfaces, 2013, 5(22): 11836–11843Google Scholar
  40. 40.
    Yook J Y, Lee M, Song K H, Jun J, Kwak S. Surface modification of poly(ethylene-2,6-naphthalate) using NH3 plasma. Macromolecular Research, 2014, 22(5): 534–540Google Scholar
  41. 41.
    Aparicio F J, Thiry D, Laha P, Snyders R. Wide range control of the chemical composition and optical properties of propanethiol plasma polymer films by regulating the deposition temperature. Plasma Processes and Polymers, 2016, 13(8): 814–822Google Scholar
  42. 42.
    Jiang H, Grant J T, Enlow J, Su W, Bunning T J. Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19 (15): 2234–2239Google Scholar
  43. 43.
    Sokrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. New York: Wiley-Interscience, 2001, 191–198Google Scholar
  44. 44.
    Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold W H, Epple M. Chlorhexidine-loaded calcium phosphatenanoparticles for dental maintenance treatment: Combination of mineralising and antibacterial effects. RSC Advances, 2012, 2(3): 870–875Google Scholar
  45. 45.
    Badea M, Olar R, Iliş M, Georgescu R, Călinescu M. Synthesis, characterization, and thermal decomposition of new copper (II) complex compounds with chlorhexidine. Journal of Thermal Analysis and Calorimetry, 2012, 111(3): 1763–1770Google Scholar
  46. 46.
    Pal S, Tak Y K, Han E, Rangasamy S, Song J M. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New Journal of Chemistry, 2014, 38(8): 3889–3898Google Scholar
  47. 47.
    Holešová S, Valášková M, Hlaváè D, Madejová J, Samlíková M, Tokarský J, Pazdziora E. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Applied Surface Science, 2014, 305: 783–791Google Scholar
  48. 48.
    Biederman H, ed. Plasma Polymer Films. London: Imperial College Press, 2004, 227–231Google Scholar
  49. 49.
    Labay C, Canal J M, Modic M, Cvelbar U, Quiles M, Armengol M, Arbos M A, Gil F J, Canal C. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71: 132–144Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ana Mora-Boza
    • 1
  • Francisco J. Aparicio
    • 1
    Email author
  • María Alcaire
    • 1
  • Carmen López-Santos
    • 1
  • Juan P. Espinós
    • 1
  • Daniel Torres-Lagares
    • 2
  • Ana Borrás
    • 1
  • Angel Barranco
    • 1
    Email author
  1. 1.Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla)SevillaSpain
  2. 2.Facultad de OdontologíaUniversidad de Sevilla (USE)SevillaSpain

Personalised recommendations