An overview of carbon nanotubes role in heavy metals removal from wastewater

  • Leila Ouni
  • Ali RamazaniEmail author
  • Saeid Taghavi Fardood
Review Article


The scarcity of water, mainly in arid and semiarid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/ wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.


carbon nanotubes heavy metals removal water treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marques P, Rosa M, Pinheiro H. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess and Biosystems Engineering, 2000, 23(2): 135–141CrossRefGoogle Scholar
  2. 2.
    Dubey R, Xavier R. Study on removal of toxic metals using various adsorbents from aqueous environment: A review. Scinzer Journal of Engineering, 2015, 1(1): 30–36Google Scholar
  3. 3.
    Zahra N. Lead removal from water by low cost adsorbents: A review. Pakistan Journal of Analytical & Environmental Chemistry, 2012, 13(1): 8Google Scholar
  4. 4.
    Sadegh H, Shahryari-ghoshekandi R, Tyagi I, Agarwal S, Gupta V K. Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). Journal of Molecular Liquids, 2015, 207: 21–27CrossRefGoogle Scholar
  5. 5.
    Gupta V, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Maazinejad B. Nanoparticles as adsorbent: A positive approach for removal of noxious metal ions: A review. Science. Technology and Development, 2015, 34(3): 195–214CrossRefGoogle Scholar
  6. 6.
    Taghavi Fardood S, Atrak K, Ramazani A. Green synthesis using tragacanth gum and characterization of Ni-Cu-Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(14): 10739–10746CrossRefGoogle Scholar
  7. 7.
    Taghavi Fardood S, Golfar Z, Ramazani A. Novel sol-gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. Journal of Materials Science Materials in Electronics, 2017, 28(22): 17002–17008CrossRefGoogle Scholar
  8. 8.
    Shayegan M E, Sorbiun M, Ramazani A, Taghavi Fardood S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science Materials in Electronics, 2017, 29(2): 1333–1340CrossRefGoogle Scholar
  9. 9.
    Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. Journal of Materials Science Materials in Electronics, 2018, 29(4): 2806–2814CrossRefGoogle Scholar
  10. 10.
    Duruibe J, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007, 2(5): 112–118Google Scholar
  11. 11.
    Järup L. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182CrossRefPubMedGoogle Scholar
  12. 12.
    Zahir F, Rizwi S J, Haq S K, Khan R H. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 2005, 20(2): 351–360CrossRefPubMedGoogle Scholar
  13. 13.
    Langford N, Ferner R. Toxicity of mercury. Journal of Human Hypertension, 1999, 13(10): 651–656CrossRefPubMedGoogle Scholar
  14. 14.
    Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 2003, 97(1): 219–243CrossRefPubMedGoogle Scholar
  15. 15.
    Ernhart C B. A critical review of low-level prenatal lead exposure in the human: 1. Effects on the fetus and newborn. Reproductive Toxicology (Elmsford, N.Y.), 1992, 6(1): 9–19CrossRefGoogle Scholar
  16. 16.
    Gupta V K, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-nejat O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA, and PVA as adsorbent for removal of azo dyes from liquid phase. Journal of Molecular Liquids, 2015, 206: 129–136CrossRefGoogle Scholar
  17. 17.
    Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 1000154CrossRefGoogle Scholar
  18. 18.
    Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 2011, 45(24): 10454–10462CrossRefGoogle Scholar
  19. 19.
    Lu C, Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4): 1138–1145CrossRefGoogle Scholar
  20. 20.
    Tuzen M, Soylak M. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials, 2007, 147(1): 219–225CrossRefPubMedGoogle Scholar
  21. 21.
    Taghavi Fardood S, Ramazani A, Moradi S, Azimzadeh A P. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(18): 13596–13601CrossRefGoogle Scholar
  22. 22.
    Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental of Research, 2018, 12(1): 29–37CrossRefGoogle Scholar
  23. 23.
    Luke C. Photometric determination of antimony and thallium in lead. Analytical Chemistry, 1959, 31(10): 1680–1682CrossRefGoogle Scholar
  24. 24.
    Shah K, Gupta K, Sengupta B. Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. Journal of Environmental Chemical Engineering, 2017, 5(5): 5260–5269CrossRefGoogle Scholar
  25. 25.
    Reynier N, Coudert L, Blais J F, Mercier G, Besner S. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3(2): 977–985CrossRefGoogle Scholar
  26. 26.
    Means J L, Crerar D A, Borcsik M P, Duguid J O. Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments. Geochimica et Cosmochimica Acta, 1978, 42(12): 1763–1773CrossRefGoogle Scholar
  27. 27.
    Nozaki T. Indirect colorimetric determination of Thallium. Journal of the Chemical Society of Japan. Pure Chemistry Section, 1956, 77: 493–498Google Scholar
  28. 28.
    Strelow F, Victor A. Quantitative separation of Al, Ga, In, and Tl by cation exchange chromatography in hydrochloric acid-acetone. Talanta, 1972, 19(9): 1019–1023CrossRefPubMedGoogle Scholar
  29. 29.
    Matthews A, Kiley J P. The determination of thallium in silicate rocks, marine sediments and sea water. Analytica Chimica Acta, 1969, 48(1): 25–34CrossRefGoogle Scholar
  30. 30.
    Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407–418CrossRefPubMedGoogle Scholar
  31. 31.
    Sato T, Sato K. Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1992, 30(1–3): 367–383CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Jin B, Ma B, Feng X. Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. Journal of Environmental Chemical Engineering, 2017, 5(3): 2182–2188CrossRefGoogle Scholar
  33. 33.
    Bidari E, Irannejad M, Gharabaghi M. Solvent extraction recovery and separation of cadmium and copper from sulphate solution. Journal of Environmental Chemical Engineering, 2013, 1(4): 1269–1274CrossRefGoogle Scholar
  34. 34.
    Cheng C Y, Barnard K R, Zhang W, Zhu Z, Pranolo Y. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chinese Journal of Chemical Engineering, 2016, 24(2): 237–248CrossRefGoogle Scholar
  35. 35.
    Yamini Y, Ashtari P, Khanchi A, Ghannadi-Maragheh M, Shamsipur M. Preconcentration of trace amounts of uranium in water samples on octadecyl silica membrane disks modified by bis (2-ethylhexyl) hydrogen phosphate and its determination by alphaspectrometry without electrodeposition. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242(3): 783–786CrossRefGoogle Scholar
  36. 36.
    Shamsipur M, Yamini Y, Ashtari P, Khanchi A R, Ghannadi- Marageh M. A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using octadecyl silica membrane disks modified by tri-n-octyl phosphine oxide. Separation Science and Technology, 2000, 35(7): 1011–1019CrossRefGoogle Scholar
  37. 37.
    Ashtari P, Wang K, Yang X, Ahmadi S J. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles. Analytica Chimica Acta, 2009, 646(1): 123–127CrossRefPubMedGoogle Scholar
  38. 38.
    Knyazkova T, Kavitskaya A. Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions. Desalination, 2000, 131(1–3): 129–136CrossRefGoogle Scholar
  39. 39.
    Ersahin M E, Ozgun H, Dereli R K, Ozturk I, Roest K, van Lier J B. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 2012, 122: 196–206CrossRefPubMedGoogle Scholar
  40. 40.
    Khosravi J, Alamdari A. Copper removal from oil-field brine by coprecipitation. Journal of Hazardous Materials, 2009, 166(2): 695–700CrossRefPubMedGoogle Scholar
  41. 41.
    Al-Rashdi B, Somerfield C, Hilal N. Heavy metals removal using adsorption and nanofiltration techniques. Separation and Purification Reviews, 2011, 40(3): 209–259CrossRefGoogle Scholar
  42. 42.
    Elsehly E, Chechenin N, Makunin A, Vorobyeva E, Motaweh H. Oxidized carbon nanotubes filters for iron removal from aqueous solutions. International Journal of New Technologies in Science and Engineering, 2015, 2(2): 14–18Google Scholar
  43. 43.
    Hossini H, Rezaee A, Mohamadiyan G. Hexavalent chromium removal from aqueous solution using functionalized multi-walled carbon nanotube: Optimization of parameters by response surface methodology. Health Scope, 2015, 4(1): e19892CrossRefGoogle Scholar
  44. 44.
    Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004, 167: 379–385CrossRefGoogle Scholar
  45. 45.
    Barakat M. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011, 4(4): 361–377CrossRefGoogle Scholar
  46. 46.
    Deliyanni E, Peleka E, Matis K. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 2007, 141(1): 176–184CrossRefPubMedGoogle Scholar
  47. 47.
    Mobasherpour I, Salahi E, Ebrahimi M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Research on Chemical Intermediates, 2012, 38(9): 2205–2222CrossRefGoogle Scholar
  48. 48.
    Liu C, Bai R, San Ly Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 2008, 42(6): 1511–1522CrossRefPubMedGoogle Scholar
  49. 49.
    Gupta V, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Goodarzi M, Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: A review. Critical Reviews in Environmental Science and Technology, 2016, 46(2): 93–118CrossRefGoogle Scholar
  50. 50.
    Li Y H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609CrossRefPubMedGoogle Scholar
  51. 51.
    Imamoglu M, Tekir O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 2008, 228(1–3): 108–113CrossRefGoogle Scholar
  52. 52.
    Ihsanullah, Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Qureshi M I, Laoui T, Atieh M A. Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 2016, 57(16): 7232–7244CrossRefGoogle Scholar
  53. 53.
    Hasar H. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 2003, 97(1): 49–57CrossRefPubMedGoogle Scholar
  54. 54.
    Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001, 24 (3): 497–505CrossRefGoogle Scholar
  55. 55.
    Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 2004, 279 (2): 307–313CrossRefPubMedGoogle Scholar
  56. 56.
    Shamsijazeyi H, Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 852–858CrossRefGoogle Scholar
  57. 57.
    Goyal M, Bhagat M, Dhawan R. Removal of mercury from water by fixed bed activated carbon columns. Journal of Hazardous Materials, 2009, 171(1): 1009–1015CrossRefPubMedGoogle Scholar
  58. 58.
    Di Natale F, Erto A, Lancia A, Musmarra D. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. Journal of Hazardous Materials, 2011, 192 (3): 1842–1850CrossRefPubMedGoogle Scholar
  59. 59.
    Biškup B, Subotic B. Removal of heavy metal ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology, 2005, 39(4): 925–940CrossRefGoogle Scholar
  60. 60.
    Bottero J Y, Rose J, Wiesner M R. Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2 4): 391–395CrossRefPubMedGoogle Scholar
  61. 61.
    Justi K C, Fávere V T, Laranjeira M C, Neves A, Peralta R A. Kinetics and equilibrium adsorption of Cu (II), Cd (II), and Ni (II) ions by chitosan functionalized with 2 [-bis-(pyridylmethyl) aminomethyl]-4-methyl-6-formylphenol. Journal of Colloid and Interface Science, 2005, 291(2): 369–374CrossRefPubMedGoogle Scholar
  62. 62.
    Ngah W W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456CrossRefGoogle Scholar
  63. 63.
    Hawari A H, Mulligan C N. Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692–700CrossRefPubMedGoogle Scholar
  64. 64.
    Brown P, Jefcoat I A, Parrish D, Gill S, Graham E. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 2000, 4(1): 19–29CrossRefGoogle Scholar
  65. 65.
    Diniz C V, Doyle F M, Ciminelli V S. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology, 2002, 37(14): 3169–3185CrossRefGoogle Scholar
  66. 66.
    Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 2003, 37(4): 948–952CrossRefPubMedGoogle Scholar
  67. 67.
    Kim E J, Lee C S, Chang Y Y, Chang Y S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 2013, 5(19): 9628–9634CrossRefGoogle Scholar
  68. 68.
    Ekmekyapar F, Aslan A, Bayhan Y K, Cakici A. Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. Journal of Hazardous Materials, 2006, 137(1): 293–298CrossRefPubMedGoogle Scholar
  69. 69.
    Ekmekyapar F, Aslan A, Bayhan Y, Cakici A. Biosorption of Pb (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental of Research, 2012, 6(2): 417–424Google Scholar
  70. 70.
    Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Hu Y, Huang Y. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 2004, 34(1): 135–142CrossRefGoogle Scholar
  71. 71.
    Ho Y, McKay G. The sorption of lead (II) ions on peat. Water Research, 1999, 33(2): 578–584CrossRefGoogle Scholar
  72. 72.
    Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 2006, 50(1): 132–140CrossRefGoogle Scholar
  73. 73.
    Karnitz O Jr, Gurgel L V A, De Melo J C P, Botaro V R, Melo TM S, de Freitas Gil R P, Gil L F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 2007, 98(6): 1291–1297CrossRefPubMedGoogle Scholar
  74. 74.
    An H, Park B, Kim D. Crab shell for the removal of heavy metals from aqueous solution. Water Research, 2001, 35(15): 3551–3556CrossRefPubMedGoogle Scholar
  75. 75.
    Huang J, Li Y, Cao Y, Peng F, Cao Y, Shao Q, Liu H, Guo Z. Hexavalent chromium removal over magnetic carbon nanoadsorbent: Synergistic effect of fluorine and nitrogen Co-doping. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 13062–13074CrossRefGoogle Scholar
  76. 76.
    Gong K, Hu Q, Yao L, Li M, Sun D, Shao Q, Qiu B, Guo Z. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr (VI) removal from wastewater. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7283–7291CrossRefGoogle Scholar
  77. 77.
    Gong K, Hu Q, Xiao Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z. Triple layered core–shell ZVI@ carbon@ polyaniline composite enhanced electron utilization in Cr (VI) reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(24): 11119–11128Google Scholar
  78. 78.
    Wang Y P, Zhou P, Luo S Z, Liao X P, Wang B, Shao Q, Guo X, Guo Z. Controllable synthesis of monolayer poly (acrylic acid) on channel surface of mesoporous alumina for Pb (II) adsorption. Langmuir, 2018, 34(26): 7859–7868CrossRefPubMedGoogle Scholar
  79. 79.
    Huang J, Cao Y, Shao Q, Peng X, Guo Z. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Industrial & Engineering Chemistry Research, 2017, 56(38): 10689–10701CrossRefGoogle Scholar
  80. 80.
    Wang Y P, Zhou P, Luo S Z, Guo S, Lin J, Shao Q, Guo X, Liu Z, Shen J, Wang B, Guo Z. In situ polymerized poly (acrylic acid)/ alumina nanocomposites for Pb2+ adsorption. Advances in Polymer Technology, 2018, doi: Scholar
  81. 81.
    Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik E K, Guo Z. Porous lignin based poly (acrylic acid)/ organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer, 2017, 128: 12–23CrossRefGoogle Scholar
  82. 82.
    Abdel G H H, Ali G A, Fouad O A, Makhlouf S A. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 2015, 53(11): 2980–2989CrossRefGoogle Scholar
  83. 83.
    Arias M, Barral M, Mejuto J. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48(10): 1081–1088CrossRefPubMedGoogle Scholar
  84. 84.
    Rao M M, Ramesh A, Rao G P C, Seshaiah K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006, 129(1): 123–129PubMedGoogle Scholar
  85. 85.
    Cao C Y, Cui Z M, Chen C Q, Song W G, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. Journal of Physical Chemistry C, 2010, 114(21): 9865–9870CrossRefGoogle Scholar
  86. 86.
    Nakamoto K, Ohshiro M, Kobayashi T. Mordenite zeolite- Polyethersulfone composite fibers developed for decontamination of heavy metal ions. Journal of Environmental Chemical Engineering, 2017, 5(1): 513–525CrossRefGoogle Scholar
  87. 87.
    Mudasir M, Karelius K, Aprilita N H, Wahyuni E T. Adsorption of mercury (II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 2016, 4(2): 1839–1849CrossRefGoogle Scholar
  88. 88.
    Nguyen T C, Loganathan P, Nguyen T V, Vigneswaran S, Kandasamy J, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixedbed column studies. Chemical Engineering Journal, 2015, 270: 393–404CrossRefGoogle Scholar
  89. 89.
    Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 2011, 170(2): 395–410CrossRefGoogle Scholar
  90. 90.
    Yang S T, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181(3): 182–189CrossRefPubMedGoogle Scholar
  91. 91.
    Qin L, Huang Q, Wei Z, Wang L, Wang Z. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to daphnia magna. Environmental Toxicology and Pharmacology, 2014, 38(1): 199–204CrossRefPubMedGoogle Scholar
  92. 92.
    Hu C, Zhang L, Wang W, Cui Y, Li M. Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biology & Biochemistry, 2014, 70: 123–130CrossRefGoogle Scholar
  93. 93.
    Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45(7): 1419–1424CrossRefGoogle Scholar
  94. 94.
    Alagappan P N, Heimann J, Morrow L, Andreoli E, Barron A R. Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 2017, 7(1): 6682CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang T, Weissman J, Ramesh G, Varadarajan R, Benemann J. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 1996, 57(5): 779–786CrossRefPubMedGoogle Scholar
  96. 96.
    Bhattacharya K, Mukherjee S P, Gallud A, Burkert S C, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12 (2): 333–351CrossRefPubMedGoogle Scholar
  97. 97.
    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58CrossRefGoogle Scholar
  98. 98.
    Sadegh H, Ali G A, Gupta V K, Makhlouf A S H, Shahryarighoshekandi R, Nadagouda M N, Sillanpää M, Megiel E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 2017, 7(1): 1–14CrossRefGoogle Scholar
  99. 99.
    Wiesner M, Bottero J Y. Environmental Nanotechnology. New York: McGraw-Hill Professional Publishing, 2007Google Scholar
  100. 100.
    Khan Z H, Husain M. Carbon nanotube and its possible applications. Indian Journal of Engineering and Materials Sciences, 2005, 12(6): 529–551Google Scholar
  101. 101.
    Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z. Flexible polydimethylsiloxane/ multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125: 50–57CrossRefGoogle Scholar
  102. 102.
    Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K, Lin H, Guo Z. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Advanced Functional Materials, 2017, 27(42): 1703068CrossRefGoogle Scholar
  103. 103.
    Wu Z, Gao S, Chen L, Jiang D, Shao Q, Zhang B, Zhai Z, Wang C, Zhao M, Ma Y, Zhang X, Weng L, Zhang M, Guo Z. Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@ MWCNTs and montmorillonite bifillers. Macromolecular Chemistry and Physics, 2017, 218(23): 1700357CrossRefGoogle Scholar
  104. 104.
    Zhang K, Li G H, Feng L M, Wang N, Guo J, Sun K, Yu K X, Zeng J B, Li T, Guo Z, Wang M. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (Llactide)/ multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(36): 9359–9369CrossRefGoogle Scholar
  105. 105.
    Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Applied Materials & Interfaces, 2016, 8(22): 14150–14159CrossRefGoogle Scholar
  106. 106.
    He Y, Yang S, Liu H, Shao Q, Chen Q, Lu C, Jiang Y, Liu C, Guo Z. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. Journal of Colloid and Interface Science, 2018, 517: 40–51CrossRefPubMedGoogle Scholar
  107. 107.
    Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(9): 2318–2328CrossRefGoogle Scholar
  108. 108.
    Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(9): 2258–2269CrossRefGoogle Scholar
  109. 109.
    Zhou B, Li Y, Dai K, Zheng G, Liu C, Ma Y, Zhang J X, Wang N, Shen C, Guo Z. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite film for switchable thermochromic applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(31): 8360–8371CrossRefGoogle Scholar
  110. 110.
    Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochimica Acta, 2018, 260: 65–72CrossRefGoogle Scholar
  111. 111.
    Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Ryu J E, Shankar A, Li T, Yan C, Guo Z. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Composites Science and Technology, 2018, 154: 28–36CrossRefGoogle Scholar
  112. 112.
    Zheng F, Baldwin D L, Fifield L S, Anheier N C, Aardahl C L, Grate J W. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Analytical Chemistry, 2006, 78 (7): 2442–2446CrossRefPubMedGoogle Scholar
  113. 113.
    Zhou Q, Wang W, Xiao J. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica Chimica Acta, 2006, 559(2): 200–206CrossRefGoogle Scholar
  114. 114.
    Liang P, Ding Q, Song F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science, 2005, 28(17): 2339–2343CrossRefPubMedGoogle Scholar
  115. 115.
    Liang P, Liu Y, Guo L, Zeng J, Lu H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1489–1492CrossRefGoogle Scholar
  116. 116.
    Li Y H, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057–1062CrossRefGoogle Scholar
  117. 117.
    Tavallali H, Fakhraee V. Preconcentration and determination of trace amounts of Cd2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2011, 3(3): 1628–1634Google Scholar
  118. 118.
    Pu Y, Yang X, Zheng H, Wang D, Su Y, He J. Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 2013, 219: 403–410CrossRefGoogle Scholar
  119. 119.
    Tavallali H. Preconcentration and determination of trace amounts of Ag+ and Pb2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2013, 5(1): 105–108Google Scholar
  120. 120.
    Ouyang M, Huang J L, Lieber C M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Physical Review Letters, 2002, 88(6): 066804CrossRefPubMedGoogle Scholar
  121. 121.
    Wan X, Dong J, Xing D. Optical properties of carbon nanotubes. Physical Review. B, 1998, 58(11): 6756–6759CrossRefGoogle Scholar
  122. 122.
    Chen C, Wang X. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 2006, 45(26): 9144–9149CrossRefGoogle Scholar
  123. 123.
    Al-Hakami S M, Khalil A B, Laoui T, Atieh MA. Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorganic Chemistry and Applications, 2013, 2013: 1–9CrossRefGoogle Scholar
  124. 124.
    Hou P X, Liu C, Cheng H M. Purification of carbon nanotubes. Carbon, 2008, 46(15): 2003–2025CrossRefGoogle Scholar
  125. 125.
    Ngo C L, Le Q T, Ngo T T, Nguyen D N, Vu M T. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035017Google Scholar
  126. 126.
    Ouni L, Mirzaei M, Ashtari P, Ramazani A, Rahimi M, Bolourinovin F. Isocyanate functionalized multiwalled carbon nanotubes for separation of lead from cyclotron production of thallium-201. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 633–643CrossRefGoogle Scholar
  127. 127.
    Huang Y Y, Terentjev E M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers, 2012, 4(1): 275–295CrossRefGoogle Scholar
  128. 128.
    Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106(3): 1105–1136CrossRefPubMedGoogle Scholar
  129. 129.
    Popuri S R, Frederick R, Chang C Y, Fang S S, Wang C C, Lee L C. Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalination and Water Treatment, 2014, 52(4–6): 691–701CrossRefGoogle Scholar
  130. 130.
    Koh B, Cheng W. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir, 2014, 30(36): 10899–10909CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Es’haghi Z, Golsefidi M A, Saify A, Tanha A A, Rezaeifar Z, Alian-Nezhadi Z. Carbon nanotube reinforced hollow fiber solid/ liquid phase microextraction: A novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. Journal of Chromatography. A, 2010, 1217(17): 2768–2775CrossRefPubMedGoogle Scholar
  132. 132.
    Fu L, Yu A. Carbon nanotubes based thin films: Fabrication, characterization and applications. Reviews on Advanced Materials Science, 2014, 36: 40–61Google Scholar
  133. 133.
    Chen C, Liang B, Ogino A, Wang X, Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by microwaveexcited surface-wave plasma treatment. Journal of Physical Chemistry C, 2009, 113(18): 7659–7665CrossRefGoogle Scholar
  134. 134.
    Nair L G, Mahapatra A S, Gomathi N, Joseph K, Neogi S, Nair C R. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Applied Surface Science, 2015, 340: 64–71CrossRefGoogle Scholar
  135. 135.
    Mishra P, Islam S. Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy. Superlattices and Microstructures, 2013, 64: 399–407CrossRefGoogle Scholar
  136. 136.
    Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Critical Reviews in Analytical Chemistry, 2018, 48(1): 1–14CrossRefPubMedGoogle Scholar
  137. 137.
    Babu D J, Yadav S, Heinlein T, Cherkashinin G, Schneider J J. Schneider Jr J. Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes. Journal of Physical Chemistry C, 2014, 118(22): 12028–12034CrossRefGoogle Scholar
  138. 138.
    Talapatra S, Zambano A, Weber S, Migone A. Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Physical Review Letters, 2000, 85(1): 138–141CrossRefPubMedGoogle Scholar
  139. 139.
    Byl O, Kondratyuk P, Forth S T, FitzGerald S A, Chen L, Johnson J K, Yates J T. Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: A vibrational spectroscopy study. Journal of the American Chemical Society, 2003, 125(19): 5889–5896CrossRefPubMedGoogle Scholar
  140. 140.
    Muris M, Dupont-Pavlovsky N, Bienfait M, Zeppenfeld P. Where are the molecules adsorbed on single-walled nanotubes? Surface Science, 2001, 492(1): 67–74CrossRefGoogle Scholar
  141. 141.
    Fujiwara A, Ishii K, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters, 2001, 336(3): 205–211CrossRefGoogle Scholar
  142. 142.
    Muris M, Dufau N, Bienfait M, Dupont-Pavlovsky N, Grillet Y, Palmari J. Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir, 2000, 16(17): 7019–7022CrossRefGoogle Scholar
  143. 143.
    Rawat D S, Calbi M M, Migone A D. Equilibration time: Kinetics of gas adsorption on closed-and open-ended single-walled carbon nanotubes. Journal of Physical Chemistry C, 2007, 111(35): 12980–12986CrossRefGoogle Scholar
  144. 144.
    Wang H, Zhou A, Peng F, Yu H, Chen L. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Materials Science and Engineering A, 2007, 466(1): 201–206CrossRefGoogle Scholar
  145. 145.
    Ulbricht H, Kriebel J, Moos G, Hertel T. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 2002, 363(3): 252–260CrossRefGoogle Scholar
  146. 146.
    Babaa M, Stepanek I, Masenelli-Varlot K, Dupont-Pavlovsky N, McRae E, Bernier P. Opening of single-walled carbon nanotubes: Evidence given by krypton and xenon adsorption. Surface Science, 2003, 531(1): 86–92CrossRefGoogle Scholar
  147. 147.
    Kosa S A, Al-Zhrani G, Salam M A. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 2012, 181: 159–168CrossRefGoogle Scholar
  148. 148.
    Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. Waterdispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979–3986CrossRefPubMedGoogle Scholar
  149. 149.
    Saeidi N, Parvini M, Niavarani Z. High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb (II) from wastewater. Journal of Environmental Chemical Engineering, 2015, 3(4): 2697–2706CrossRefGoogle Scholar
  150. 150.
    Ansari M O, Kumar R, Ansari S A, Ansari S P, Barakat M, Alshahrie A, Cho M H. Anion selective pTSA doped polyaniline@ graphene oxide-multiwalled carbon nanotube composite for Cr (VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496: 407–415CrossRefPubMedGoogle Scholar
  151. 151.
    Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. Journal of Hazardous Materials, 2017, 336: 146–157CrossRefPubMedGoogle Scholar
  152. 152.
    Tofighy M A, Mohammadi T. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination and Water Treatment, 2016, 57(33): 15384–15396CrossRefGoogle Scholar
  153. 153.
    Kanthapazham R, Ayyavu C, Mahendiradas D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination and Water Treatment, 2016, 57(36): 16871–16885Google Scholar
  154. 154.
    Lasheen M, El-Sherif I Y, Sabry D Y, El-Wakeel S, El-Shahat M. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination and Water Treatment, 2015, 53(13): 3521–3530CrossRefGoogle Scholar
  155. 155.
    Jiang L, Yu H, Zhou X, Hou X, Zou Z, Li S, Li C, Yao X. Preparation, characterization, and adsorption properties of magnetic multi-walled carbon nanotubes for simultaneous removal of lead (II) and zinc (II) from aqueous solutions. Desalination and Water Treatment, 2016, 57(39): 18446–18462CrossRefGoogle Scholar
  156. 156.
    Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H. A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5(4): 3405–3417CrossRefGoogle Scholar
  157. 157.
    Mubarak N, Alicia R, Abdullah E, Sahu J, Haslija A A, Tan J. Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 2013, 1(3): 486–495CrossRefGoogle Scholar
  158. 158.
    Park W K, Yoon Y, Kim S, Yoo S, Do Y, Kang J W, Yoon D H, Yang W S. Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. Journal of Environmental Chemical Engineering, 2016, 4(3): 3246–3252CrossRefGoogle Scholar
  159. 159.
    Varghese S S, Varghese S H, Swaminathan S, Singh K K, Mittal V. Two-dimensional materials for sensing: Graphene and beyond. Electronics (Basel), 2015, 4(3): 651–687Google Scholar
  160. 160.
    Mu C, Song J, Wang B, Zhang C, Xiang J, Wen F, Liu Z. Twodimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2017, 29 (2): 025704CrossRefGoogle Scholar
  161. 161.
    Saadat S, Karimi-Jashni A, Doroodmand M M. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions. Journal of Environmental Chemical Engineering, 2014, 2(4): 2059–2067CrossRefGoogle Scholar
  162. 162.
    Sankararamakrishnan N, Gupta A, Vidyarthi S R. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 2014, 2(2): 802–810CrossRefGoogle Scholar
  163. 163.
    Sobhanardakani S, Zandipak R, Cheraghi M. Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna Journal of Environmental Health Engineering, 2015, 2(1): e790CrossRefGoogle Scholar
  164. 164.
    AlOmar M K, Alsaadi M A, Hayyan M, Akib S, Hashim M A. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389: 216–226CrossRefGoogle Scholar
  165. 165.
    Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. Journal of Molecular Liquids, 2016, 224(Part A): 1032–1040CrossRefGoogle Scholar
  166. 166.
    Asadollahi N, Yavari R, Ghanadzadeh H. Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2445–2455Google Scholar
  167. 167.
    Al Hamouz O C S, Adelabu I O, Saleh T A. Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 2017, 192: 163–170CrossRefPubMedGoogle Scholar
  168. 168.
    Yang W, Ding P, Zhou L, Yu J, Chen X, Jiao F. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Applied Surface Science, 2013, 282: 38–45CrossRefGoogle Scholar
  169. 169.
    Bandaru N M, Reta N, Dalal H, Ellis A V, Shapter J, Voelcker N H. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261: 534–541CrossRefPubMedGoogle Scholar
  170. 170.
    Sankararamakrishnan N, Jaiswal M, Verma N. Composite nano- floral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chemical Engineering Journal, 2014, 235: 1–9CrossRefGoogle Scholar
  171. 171.
    Saadi R, Saadi Z, Fazaeli R, Fard N E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 2015, 32(5): 787–799CrossRefGoogle Scholar
  172. 172.
    Moghaddam H K, Pakizeh M. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 21: 221–229CrossRefGoogle Scholar
  173. 173.
    Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 2012, 3(1): 38–45CrossRefGoogle Scholar
  174. 174.
    Velickovic Z S, Marinkovic A D, Bajic Z J, Markovic J M, Peric-Grujic A A, Uskokovic P S, Ristic M D. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Separation Science and Technology, 2013, 48(13): 2047–2058CrossRefGoogle Scholar
  175. 175.
    Ren X, Li J, Tan X, Wang X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions (Cambridge, England), 2013, 42(15): 5266–5274CrossRefGoogle Scholar
  176. 176.
    Jung C, Heo J, Han J, Her N, Lee S J, Oh J, Ryu J, Yoon Y. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 2013, 106: 63–71CrossRefGoogle Scholar
  177. 177.
    Liu Z, Chen L, Zhang Z, Li Y, Dong Y, Sun Y. Synthesis of multiwalled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. Journal of Molecular Liquids, 2013, 179: 46–53CrossRefGoogle Scholar
  178. 178.
    Pillay K, Cukrowska E, Coville N. Improved uptake of mercury by sulphur-containing carbon nanotubes. Microchemical Journal, 2013, 108: 124–130CrossRefGoogle Scholar
  179. 179.
    Ramana D V, Yu J S, Seshaiah K. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: Surface, kinetic, equilibrium, and thermal adsorption properties. Chemical Engineering Journal, 2013, 223: 806–815CrossRefGoogle Scholar
  180. 180.
    Chen B, Zhu Z, Ma J, Qiu Y, Chen J. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11355–11367CrossRefGoogle Scholar
  181. 181.
    Gupta A, Vidyarthi S, Sankararamakrishnan N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2014, 274: 132–144CrossRefPubMedGoogle Scholar
  182. 182.
    Hadavifar M, Bahramifar N, Younesi H, Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 2014, 237: 217–228CrossRefGoogle Scholar
  183. 183.
    Ge Y, Li Z, Xiao D, Xiong P, Ye N. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1765–1771CrossRefGoogle Scholar
  184. 184.
    Chen P H, Hsu C F, Tsai D D W, Lu Y M, Huang W J. Adsorption of mercury from water by modified multi-walled carbon nanotubes: Adsorption behaviour and interference resistance by coexisting anions. Environmental Technology, 2014, 35(15): 1935–1944CrossRefPubMedGoogle Scholar
  185. 185.
    Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z, He X, He Y. Facile synthesis of aluminadecorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 2015, 273: 101–110CrossRefGoogle Scholar
  186. 186.
    Kumar A S K, Jiang S J, Tseng W L. Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 7044–7057CrossRefGoogle Scholar
  187. 187.
    Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Atieh M A. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalination and Water Treatment, 2015, 53(5): 1417–1429Google Scholar
  188. 188.
    Ma X, Yang S T, Tang H, Liu Y, Wang H. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448: 347–355CrossRefPubMedGoogle Scholar
  189. 189.
    Al Khaldi F A, Abusharkh B, Khaled M, Atieh M A, Nasser M, Saleh T A, Agarwal S, Tyagi I, Gupta V K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbonbased adsorbents. Journal of Molecular Liquids, 2015, 204: 255–263CrossRefGoogle Scholar
  190. 190.
    Yaghmaeian K, Mashizi R K, Nasseri S, Mahvi A H, Alimohammadi M, Nazmara S. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science & Engineering, 2015, 13(1): 55CrossRefGoogle Scholar
  191. 191.
    Zhao X H, Jiao F P, Yu J G, Xi Y, Jiang X Y, Chen X Q. Removal of Cu (II) from aqueous solutions by tartaric acid modified multiwalled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2015, 476: 35–41CrossRefGoogle Scholar
  192. 192.
    Karkeh-abadi F, Saber-Samandari S. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions. Journal of Hazardous Materials, 2016, 312: 224–233CrossRefPubMedGoogle Scholar
  193. 193.
    Jiang L, Li S, Yu H, Zou Z, Hou X, Shen F, Li C, Yao X. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Applied Surface Science, 2016, 369: 398–413CrossRefGoogle Scholar
  194. 194.
    Diva T N, Zare K, Taleshi F, Yousefi M. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. Journal of Nanostructure in Chemistry, 2017, 7(3): 273–281CrossRefGoogle Scholar
  195. 195.
    Farghali A, Tawab H A, Moaty S A, Khaled R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 2017, 7(2): 101–111CrossRefGoogle Scholar
  196. 196.
    Zhang D, Yin Y, Liu J. Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: Adsorption behavior and the impacts of some environmentally relevant factors. Chemical Speciation and Bioavailability, 2017, 29(1): 161–169CrossRefGoogle Scholar
  197. 197.
    Elmi F, Hosseini T, Taleshi M S, Taleshi F. Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe3O4/CNT. Nanotechnology for Environmental Engineering, 2017, 2(1): 13CrossRefGoogle Scholar
  198. 198.
    Abdel Ghani N T, El Chaghaby G A, Helal F S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research, 2015, 6(3): 405–415CrossRefPubMedGoogle Scholar
  199. 199.
    Khedr S, Shouman M, Fathy N, Attia A. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches. ISRN Environmental Chemistry, 2014, 2014: 1–11CrossRefGoogle Scholar
  200. 200.
    Dawodu F A, Akpomie K G. Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology, 2014, 3(2): 129–141CrossRefGoogle Scholar
  201. 201.
    Mubarak N, Sahu J, Abdullah E, Jayakumar N. Removal of heavy metals from wastewater using carbon nanotubes. Separation and Purification Reviews, 2014, 43(4): 311–338CrossRefGoogle Scholar
  202. 202.
    Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 2007, 58(1): 224–231CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Leila Ouni
    • 1
  • Ali Ramazani
    • 1
    Email author
  • Saeid Taghavi Fardood
    • 1
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran

Personalised recommendations