Self-assembled bright luminescent hierarchical materials from a tripodal benzoate antenna and heptadentate Eu(III) and Tb(III) cyclen complexes

  • Aramballi J. Savyasachi
  • David F. Caffrey
  • Kevin Byrne
  • Gerard Tobin
  • Bruno D’Agostino
  • Wolfgang Schmitt
  • Thorfinnur GunnlaugssonEmail author
Research Article


The europium heptadentate coordinatively unsaturated (Eu(III)) and the terbium (Tb(III)) 1,4,7,10- tetraazacyclododecane (cyclen) complexes 1 and 2 were used in conjunction with ligand 3 (1,3,5-benzene-trisethynylbenzoate) to form the supramolecular self-assembly structures 4 and 5; this being investigated in both the solid and the solution state. The resulting self-assemblies gave rise to metal centered emission (both in the solid and solution) upon excitation of 3, confirming its role as a sensitizing antenna. Drop-cased examples of ligand 3, and the solid forms of 4 and 5, formed from both organic and mixture of organic-aqueous solutions, were analyzed using Scanning Electron Microscopy, which showed significant changes in morphology; the ligand giving rise to one dimensional structures, while both 4 and 5 formed amorphous materials that were highly dense solid networks containing nanoporous features. The surface area (216 and 119 m2·g–1 for 4 and 5 respectively) and the ability of these porous materials to capture and store gases such as N2 investigated at 77 K. The self-assembly formation was also investigated in diluted solution by monitoring the various photophysical properties of 35. This demonstrated that the most stable structures were that consisting of a single antennae 3 and three complexes of 1 or 2 (e.g., 4 and 5) in solution. By monitoring the excited state lifetimes of the Eu(III) and Tb(III) ions in H2O and D2O respectively, we showed that their hydration states (the q-value) changed from ∼2 to 0, upon formation of the assemblies, indicating that the three benzoates of 3 coordinated directly to the each of the three lanthanide centers. Finally we demonstrate that this hierarchically porous materials can be used for the sensing of organic solvents as the emission is highly depended on the solvent environment; the lanthanide emission being quenched in the presence of acetonitrile and THF, but greatly enhanced in the presence of methanol.


self-assembly supramolecular chemistry lanthanides Eu(III) and Tb(III) complexes luminescence metallostars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Science Foundation Ireland (PI awards 13/IA/1865 to T.G. and 13/IA/1896 toW.S.), the Irish Research Council (Postgraduate Scholarship to DC), the European Research Council (CoG 2014–647719 to W.S.) and the School of Chemistry, Trinity College Dublin.


  1. 1.
    Sun M, Chen C, Chen L, Su B. Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301–347Google Scholar
  2. 2.
    Savyasachi A J, Kotova O, Shanmugaraju S, Bradberry S J, Ó’Máille G M, Gunnlaugsson T, Ó’Máille G M, Gunnlaugsson T. Supramolecular chemistry: A toolkit for soft functional materials and organic particles. Chem, 2017, 3(5): 764–811Google Scholar
  3. 3.
    Zhang Z, Zaworotko M J. Template–directed synthesis of metalorganic materials. Chemical Society Reviews, 2014, 43(16): 5444–5455Google Scholar
  4. 4.
    Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal–organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125Google Scholar
  5. 5.
    Barry D E, Caffrey D F, Gunnlaugsson T. Lanthanide–directed synthesis of luminescent self–assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chemical Society Reviews, 2016, 45(11): 3244–3274Google Scholar
  6. 6.
    Bünzli J C G. Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 2010, 110(5): 2729–2755Google Scholar
  7. 7.
    Thibon A, Pierre V C. Principles of responsive lanthanide–based luminescent probes for cellular imaging. Analytical and Bioanalytical Chemistry, 2009, 394(1): 107–120Google Scholar
  8. 8.
    Bradberry S J, Savyasachi A J, Martinez–Calvo M, Gunnlaugsson T. Development of responsive visibly and NIR luminescent and supramolecular coordination self–assemblies using lanthanide ion directed synthesis. Coordination Chemistry Reviews, 2014, 273–274: 226–241Google Scholar
  9. 9.
    Lincheneau C, Stomeo F, Comby S, Gunnlaugsson T. Recent highlights in the use of lanthanide–directed synthesis of novel supramolecular (luminescent) self–assembly structures such as coordination bundles, helicates and sensors. Australian Journal of Chemistry, 2011, 64(10): 1315–1326Google Scholar
  10. 10.
    Dunning S G, Nuñez A J, Moore M D, Steiner A, Lynch V M, Sessler J L, Holliday B J, Humphrey S M. A sensor for trace H2O detection in D2O. Chem, 2017, 2(4): 579–589Google Scholar
  11. 11.
    Hawes C S, Gunnlaugsson T. Multichannel luminescent lanthanide polymers as ratiometric sensors for D2O. Chem, 2017, 2(4): 463–465Google Scholar
  12. 12.
    Tobin G, Comby S, Zhu N, Clérac R, Gunnlaugsson T, Schmitt W. Towards multifunctional lanthanide–based metal–organic frameworks. Chemical Communications, 2015, 51(68): 13313–13316Google Scholar
  13. 13.
    Kotova O, Daly R, dos Santos CMG, Boese M, Kruger P E, Boland J J, Gunnlaugsson T. Europium–directed self–assembly of a luminescent supramolecular gel from a tripodal terpyridine–based ligand. Angewandte Chemie International Edition, 2012, 51(29): 7208–7212Google Scholar
  14. 14.
    Daly R, Kotova O, Boese M, Gunnlaugsson T, Boland J J. Chemical nano–gardens: Growth of salt nanowires from supramolecular selfassembly gels. ACS Nano, 2013, 7(6): 4838–4845Google Scholar
  15. 15.
    Martínez–Calvo M, Kotova O, Möbius M E, Bell A P, McCabe T, Boland J J, Gunnlaugsson T. Healable luminescent self–assembly supramolecular metallogels possessing lanthanide (Eu/Tb) dependent rheological and morphological properties. Journal of the American Chemical Society, 2015, 137(5): 1983–1992Google Scholar
  16. 16.
    Kotova O, Comby S, Lincheneau C, Gunnlaugsson T. White–light emission from discrete heterometallic lanthanide–directed selfassembled complexes in solution. Chemical Science, 2017, 8(5): 3419–3426Google Scholar
  17. 17.
    Montgomery C P, Murray B S, New E J, Pal R, Parker D. Cellpenetrating metal complex optical probes: Targeted and responsive systems based on lanthanide luminescence. Accounts of Chemical Research, 2009, 42(7): 925–937Google Scholar
  18. 18.
    Kitchen J A. Lanthanide–based self–assemblies of 2,6–pyridyldicarboxamide ligands: Recent advances and applications as nextgeneration luminescent and magnetic materials. Coordination Chemistry Reviews, 2017, 340: 232–246Google Scholar
  19. 19.
    Byrne J P, Kitchen J A, O’Brien J E, Peacock R D, Gunnlaugsson T. Lanthanide directed self–assembly of highly luminescent supramolecular “peptide” bundles from α–amino acid functionalized 2,6–bis (1,2,3–triazol–4–yl)pyridine (btp) ligands. Inorganic Chemistry, 2015, 54(4): 1426–1439Google Scholar
  20. 20.
    Byrne J P, Kitchen J A, Gunnlaugsson T. The btp [2,6–bis(1,2,3–triazol–4–yl)pyridine] binding motif: A new versatile terdentate ligand for supramolecular and coordination chemistry. Chemical Society Reviews, 2014, 43(15): 5302–5325Google Scholar
  21. 21.
    Zhang C, Shen X, Sakai R, Gottschaldt M, Schubert U S, Hirohara S, Tanihara M, Yano S, Obata M, Xiao N, et al. Syntheses of 3–arm and 4–arm star–branched polystyrene Ru(II) complexes by the click–to–chelate approach. Journal of Polymer Science. Part A: Polymer Chemistry, 2011, 49(3): 746–753Google Scholar
  22. 22.
    Munuera L, O’Reilly R K. Using metal–ligand interactions for the synthesis of metallostar polymers. Dalton Transactions, 2010, 39(2): 388–391Google Scholar
  23. 23.
    Xiao N, Chen Y, Shen X, Zhang C, Yano S, Gottschaldt M, Schubert U S, Kakuchi T, Satoh T. Synthesis of miktoarm star copolymer Ru(II) complexes by click–to–chelate approach. Polymer Journal, 2012, 45(2): 216–225Google Scholar
  24. 24.
    Meudtner R M, Stefan H. Responsive backbones based on alternating triazole–pyridine/benzene copolymers: From helically folding polymers to metallosupramolecularly crosslinked gels. Macromolecular Rapid Communications, 2008, 29(4): 347–351Google Scholar
  25. 25.
    Meudtner R M, Hecht S. Helicity inversion in responsive foldamers induced by achiral halide ion guests. Angewandte Chemie International Edition, 2008, 47(26): 4926–4930Google Scholar
  26. 26.
    McCarney E P, Byrne J P, Twamley B, Martínez–Calvo M, Ryan G, Möbius M E, Gunnlaugsson T. Self–assembly formation of a healable lanthanide luminescent supramolecular metallogel from 2,6–bis(1,2,3–triazol–4–yl)pyridine (btp) ligands. Chemical Communications, 2015, 51(74): 14123–14126Google Scholar
  27. 27.
    Byrne J P, Kitchen J A, Kotova O, Leigh V, Bell A P, Boland J J, Albrecht M, Gunnlaugsson T. Synthesis, structural, photophysical and electrochemical studies of various d–metal complexes of btp [2,6–bis(1,2,3–triazol–4–yl)pyridine] ligands that give rise to the formation of metallo–supramolecular gels. Dalton Transactions, 2014, 43(1): 196–209Google Scholar
  28. 28.
    Crowley J D, Bandeen P H. A multicomponent CuAAC “click” approach to a library of hybrid polydentate 2–pyridyl–1,2,3–triazole ligands: New building blocks for the generation of metallosupramolecular architectures. Dalton Transactions, 2010, 39(2): 612–623Google Scholar
  29. 29.
    Byrne J P, Blasco S, Aletti A B, Hessman G, Gunnlaugsson T. Formation of self–templated 2,6–bis(1,2,3–triazol–4–yl)pyridine [2] catenanes by triazolyl hydrogen bonding: Selective anion hosts for phosphate. Angewandte Chemie International Edition, 2016, 55 (31): 8938–8943Google Scholar
  30. 30.
    Byrne J P, Martínez–Calvo M, Peacock R D, Gunnlaugsson T. Chiroptical probing of lanthanide–directed self–assembly formation using btp ligands formed in one–pot diazo–transfer/deprotection click reaction from chiral amines. Chemistry, 2016, 22(2): 486–490Google Scholar
  31. 31.
    Heffern M C, Matosziuk L M, Meade T J. Lanthanide probes for bioresponsive imaging. Chemical Reviews, 2014, 114(8): 4496–4539Google Scholar
  32. 32.
    Pal R, Parker D. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission. Organic & Biomolecular Chemistry, 2008, 6(6): 1020–1033Google Scholar
  33. 33.
    Pal R, Parker D. A single component ratiometric pH probe with long wavelength excitation of europium emission. Chemical Communications, 2007, (5): 474–476Google Scholar
  34. 34.
    dos Santos C M G, Harte A J, Quinn S J, Gunnlaugsson T. Recent developments in the field of supramolecular lanthanide luminescent sensors and self–assemblies. Coordination Chemistry Reviews, 2008, 252(23–24): 2512–2527Google Scholar
  35. 35.
    Sénéchal–David K, Leonard J P, Plush S E, Gunnlaugsson T. Supramolecular self–assembly of mixed f–d metal ion conjugates. Organic Letters, 2006, 8(13): 2727–2730Google Scholar
  36. 36.
    Gunnlaugsson T. Luminescent europium tetraazamacrocyclic complexes with wide range pH sensitivity. Chemical Communications, 1998, (4): 511–512Google Scholar
  37. 37.
    Truman L K, Bradberry S J, Steve C, Oxana K, Thorfinnur G. Luminescent europium tetraazamacrocyclic complexes with wide range pH sensitivity. ChemPhysChem, 2017, 18(13): 1746–1751Google Scholar
  38. 38.
    Bradberry S J, Byrne J P, McCoy C P, Gunnlaugsson T. Lanthanide luminescent logic gate mimics in soft matter: [H+] and [F–] dualinput device in a polymer gel with potential for selective component release. Chemical Communications, 2015, 51(92): 16565–16568Google Scholar
  39. 39.
    Surender E M, Bradberry S J, Bright S A, McCoy C P, Williams D C, Gunnlaugsson T. Luminescent lanthanide cyclen–based enzymatic assay capable of diagnosing the onset of catheter–associated urinary tract infections both in solution and within polymeric hydrogels. Journal of the American Chemical Society, 2017, 139(1): 381–388Google Scholar
  40. 40.
    dos Santos C M G, Fernández P B, Plush S E, Leonard J P, Gunnlaugsson T. Lanthanide luminescent anion sensing: evidence of multiple anion recognition through hydrogen bonding and metal ion coordination. Chemical Communications, 2007, (32): 3389–3391Google Scholar
  41. 41.
    Caffrey D F, Gunnlaugsson T. Displacement assay detection by a dimeric lanthanide luminescent ternary Tb(III)–cyclen complex: High selectivity for phosphate and nitrate anions. Dalton Transactions, 2014, 43(48): 17964–17970Google Scholar
  42. 42.
    Aletti A B, Gillen D M, Gunnlaugsson T. Luminescent/colorimetric probes and (chemo–) sensors for detecting anions based on transition and lanthanide ion receptor/binding complexes. Coordination Chemistry Reviews, 2018, 354: 98–120Google Scholar
  43. 43.
    Plush S E, Gunnlaugsson T. Solution studies of trimetallic lanthanide luminescent anion sensors: Towards ratiometric sensing using an internal reference channel. Dalton Transactions, 2008, (29): 3801–3804Google Scholar
  44. 44.
    Comby S, Surender E M, Kotova O, Truman L K, Molloy J K, Gunnlaugsson T. Lanthanide–functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorganic Chemistry, 2014, 53(4): 1867–1879Google Scholar
  45. 45.
    Kotova O, Comby S, Gunnlaugsson T. Sensing of biologically relevant d–metal ions using a Eu(III)–cyclen based luminescent displacement assay in aqueous pH 7.4 buffered solution. Chemical Communications, 2011, 47(24): 6810–6812Google Scholar
  46. 46.
    McMahon B, Mauer P, McCoy C P, Lee T C, Gunnlaugsson T. Selective imaging of damaged bone structure (microcracks) using a targeting supramolecular Eu(III) complex as a lanthanide luminescent contrast agent. Journal of the American Chemical Society, 2009, 131(48): 17542–17543Google Scholar
  47. 47.
    Comby S, Tuck S A, Truman L K, Kotova O, Gunnlaugsson T. New trick for an old ligand! The sensing of Zn(II) using a lanthanide based ternary Yb(III)–cyclen–8–hydroxyquinoline system as a dual emissive probe for displacement assay. Inorganic Chemistry, 2012, 51(19): 10158–10168Google Scholar
  48. 48.
    Truman L K, Comby S, Gunnlaugsson T. pH–responsive luminescent lanthanide–functionalized gold nanoparticles with “on–off” ytterbium switchable near–infrared emission. Angewandte Chemie International Edition, 2012, 51(38): 9624–9627Google Scholar
  49. 49.
    Boulay A, Deraeve C, Vander Elst L, Leygue N, Maury O, Laurent S, Muller R N, Mestre–Voegtlé B, Picard C. Terpyridine–based heteroditopic ligand for RuIILn3 III metallostar architectures (Ln = Gd, Eu, Nd, Yb) with MRI/optical or dual–optical responses. Inorganic Chemistry, 2015, 54(4): 1414–1425Google Scholar
  50. 50.
    Nonat A M, Allain C, Faulkner S, Gunnlaugsson T. Mixed d–f3 coordination complexes possessing improved near–infrared (NIR) lanthanide luminescent properties in aqueous solution. Inorganic Chemistry, 2010, 49(18): 8449–8456Google Scholar
  51. 51.
    Sénéchal–David K, Pope S J A, Quinn S, Faulkner S, Gunnlaugsson T. Sensitized near–infrared lanthanide luminescence from Nd(III)–and Yb(III)–based cyclen–ruthenium coordination conjugates. Inorganic Chemistry, 2006, 45(25): 10040–10042Google Scholar
  52. 52.
    Debroye E, Parac–Vogt T N. Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging. Chemical Society Reviews, 2014, 43(23): 8178–8192Google Scholar
  53. 53.
    Dehaen G, Eliseeva S V, Verwilst P, Laurent S, Vander Elst L, Muller R N, De Borggraeve W, Binnemans K, Parac–Vogt T N. Tetranuclear d–f metallostars: Synthesis, relaxometric, and luminescent properties. Inorganic Chemistry, 2012, 51(16): 8775–8783Google Scholar
  54. 54.
    Dehaen G, Eliseeva S V, Kimpe K, Laurent S, Vander Elst L, Muller R N, Dehaen W, Binnemans K, Parac–Vogt T N. A self–assembled complex with a titanium(IV) catecholate core as a potential bimodal contrast agent. Chemistry, 2012, 18(1): 293–302Google Scholar
  55. 55.
    Verwilst P, Eliseeva S V, Vander Elst L, Burtea C, Laurent S, Petoud S, Muller R N, Parac–Vogt T N, De Borggraeve W M. A tripodal ruthenium–gadolinium metallostar as a potential αvβ3 integrin specific bimodal imaging contrast agent. Inorganic Chemistry, 2012, 51(11): 6405–6411Google Scholar
  56. 56.
    Gunnlaugsson T, Harte A J, Leonard J P, Nieuwenhuyzen M. Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen complexes: The recognition of salicylic acid in water. Chemical Communications, 2002, (18): 2134–2135Google Scholar
  57. 57.
    Castellano R K, Rebek J. Formation of discrete, functional assemblies and informational polymers through the hydrogenbonding preferences of calixarene aryl and sulfonyl tetraureas. Journal of the American Chemical Society, 1998, 120(15): 3657–3663Google Scholar
  58. 58.
    Zhu N, Tobin G, Schmitt W. Extending the family of Zn–based MOFs: Synthetic approaches to chiral framework structures and MOFs with large pores and channels. Chemical Communications, 2012, 48(30): 3638–3640Google Scholar
  59. 59.
    Zhu N, Lennox M J, Düren T, Schmitt W. Polymorphism of metalorganic frameworks: Direct comparison of structures and theoretical N2–uptake of topological pto–and tbo–isomers. Chemical Communications, 2014, 50(32): 4207–4210Google Scholar
  60. 60.
    Zhu N, Sensharma D, Wix P, Lennox M J, Duren T, Wong W Y, Schmitt W. Framework isomerism: Highly augmented copper(II)–paddlewheel–based mof with unusual (3,4)–net topology. European Journal of Inorganic Chemistry, 2016, 2016(13–14): 1939–1943Google Scholar
  61. 61.
    Zhu N, Lennox M J, Tobin G, Goodman L, Düren T, Schmitt W. Hetero–epitaxial approach by using labile coordination sites to prepare catenated metal–organic frameworks with high surface areas. Chemistry, 2014, 20(13): 3595–3599Google Scholar
  62. 62.
    Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Ultrahigh porosity in metal–organic frameworks. Science, 2010, 329(5990): 424–428Google Scholar
  63. 63.
    Byrne K, Zubair M, Zhu N, Zhou X P, Fox D S, Zhang H, Twamley B, Lennox M J, Düren T, Schmitt W. Ultra–large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies. Nature Communications, 2017, 8(8): 15268Google Scholar
  64. 64.
    Yao Q, Bermejo Gómez A, Su J, Pascanu V, Yun Y, Zheng H, Chen H, Liu L, Abdelhamid H N, Martín–Matute B, Zou X. Series of highly stable isoreticular lanthanide metal–organic frameworks with expanding pore size and tunable luminescent properties. Chemistry of Materials, 2015, 27(15): 5332–5339Google Scholar
  65. 65.
    Suh M P, Choi H J, So S M, Kim B M. A new metal–organic open framework consisting of threefold parallel interwoven (6,3) nets. Inorganic Chemistry, 2003, 42(3): 676–678Google Scholar
  66. 66.
    Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez–Reinoso F, Rouqerol J, Sing K S W. Physisortion of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemisty, 2015, 87(9–10): 1051–1069Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aramballi J. Savyasachi
    • 1
  • David F. Caffrey
    • 1
  • Kevin Byrne
    • 2
  • Gerard Tobin
    • 2
  • Bruno D’Agostino
    • 1
  • Wolfgang Schmitt
    • 2
  • Thorfinnur Gunnlaugsson
    • 1
    Email author
  1. 1.School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)University of Dublin, Trinity College DublinDublin 2Ireland
  2. 2.School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)University of Dublin, Trinity College DublinDublin 2Ireland

Personalised recommendations