Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill

  • Marcela AchimovicováEmail author
  • Erika Dutková
  • Erika Tóthová
  • Zdenka Bujnáková
  • Jaroslav Briancin
  • Satoshi Kitazono
Research Article


Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.


copper sulfide industrial mechanochemical synthesis thermal analysis optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was realized within the frame of the project “Infrastructure Improving of Centre of Excellence of Advanced Materials with Nano- and Submicron- Structure”, ITMS 26220120035, supported by the Operational Program “Research and Development” financed through European Regional Development Fund. It was also supported by Federal Ministry of Education and Research (BMBF), FKZ: 01DS15022 (BMBF), and the Slovak Research and Development Agency under the contract No. APVV-14-0103 and by the Slovak Grant Agency VEGA (projects 02/0065/18, 2/0175/17).


  1. 1.
    Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6(17): 9889–9924CrossRefGoogle Scholar
  2. 2.
    Roy P, Srivastava S K. Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 2015, 17(41): 7801–7815CrossRefGoogle Scholar
  3. 3.
    Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small, 2014, 10(4): 631–645CrossRefGoogle Scholar
  4. 4.
    Liu X, Li B, Fu F, Xu K, Zou R, Wang Q, Zhang B, Chen Z, Hu J. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Transactions, 2014, 43(30): 11709–11715CrossRefGoogle Scholar
  5. 5.
    Li Y, Scott J, Chen Y T, Guo L, Zhao M, Wang X, Lu W. Direct drygrinding synthesis of monodisperse lipophilic CuS nanoparticles. Materials Chemistry and Physics, 2015, 162: 671–676CrossRefGoogle Scholar
  6. 6.
    Zhou M, Song S, Zhao J, Tian M, Li C. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(46): 8939–8948CrossRefGoogle Scholar
  7. 7.
    Sahoo A K, Srivastava S K. Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity. Journal of Nanoparticle Research, 2013, 15 (4): 1591–1606CrossRefGoogle Scholar
  8. 8.
    Yang Z K, Song L X, Teng Y, Xia J. Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(47): 20004–20009CrossRefGoogle Scholar
  9. 9.
    Aziz S B, Abdulwahid R T, Rsaul H A, Ahmed H M. In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. Journal of Materials Science Materials in Electronics, 2016, 27(5): 4163–4171CrossRefGoogle Scholar
  10. 10.
    Ullmann’s Encyclopedia of Industrial Chemistry. Vol A1. 5th ed. Florida: VCH Publishers, 1985Google Scholar
  11. 11.
    The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals. New Jersey: Merck and Co., Inc., Whitehouse Station, 1996Google Scholar
  12. 12.
    Hawley’s Condensed Chemical Dictionary. 13th ed. New York: John Wiley & Sons, Inc., 1997Google Scholar
  13. 13.
    Tang K B, Chen D, Liu Y F, Shen G Z, Zheng H G, Qian Y T. Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. Journal of Crystal Growth, 2004, 263(1–4): 232–236CrossRefGoogle Scholar
  14. 14.
    Du W, Qian X, Ma X, Gong Q, Cao H, Yin J. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry, 2007, 13(11): 3241–3247CrossRefGoogle Scholar
  15. 15.
    Lou W J, Chen M, Wang X B, Liu W M. Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. Journal of Physical Chemistry C, 2007, 111(27): 9658–9663CrossRefGoogle Scholar
  16. 16.
    Zhang X, Wang G, Gu A, Wei Y, Fang B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications, 2008, 45(45): 5945–5947CrossRefGoogle Scholar
  17. 17.
    Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: Synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422–427CrossRefGoogle Scholar
  18. 18.
    Wang M R, Xie F, Li W J, Chen M F, Zhao Y. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(30): 8616–8621CrossRefGoogle Scholar
  19. 19.
    Lu Q Y, Gao F, Zhao D Y. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Letters, 2002, 2(7): 725–728CrossRefGoogle Scholar
  20. 20.
    Roy P, Srivastava S K. Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single-source precursor. Crystal Growth & Design, 2006, 6(8): 1921–1926CrossRefGoogle Scholar
  21. 21.
    Chen L F, Yu W, Li Y. Synthesis and characterization of tubular CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1–2): 52–54CrossRefGoogle Scholar
  22. 22.
    Jia B R, Qin M L, Jiang X Z, Zhang Z L, Zhang L, Liu Y, Qu X H. Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals. Journal of Nanoparticle Research, 2013, 15(3): 1469–1478CrossRefGoogle Scholar
  23. 23.
    Auyoong Y L, Yap P L, Huang X, Abd Hamid S B. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chemistry Central Journal, 2013, 7(1): 67CrossRefGoogle Scholar
  24. 24.
    Chen L F, Shang Y Z, Liu H L, Hu Y. Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion. Materials & Design, 2010, 31(4): 1661–1665CrossRefGoogle Scholar
  25. 25.
    Thongtem S, Wichasilp C, Thongtem T. Transient solid-state production of nanostructured CuS flowers. Materials Letters, 2009, 63(28): 2409–2412CrossRefGoogle Scholar
  26. 26.
    Nemade K R, Waghuley S A. Band gap engineering of CuS nanoparticles for artificial photosynthesis. Materials Science in Semiconductor Processing, 2015, 39: 781–785CrossRefGoogle Scholar
  27. 27.
    Abdelhady A L, Ramasamy K, Malik M A, O’Brien P, Haigh S J, Raftery J. New routes to copper sulfide nanostructures and thin films. Journal of Materials Chemistry, 2011, 21(44): 17888–17895CrossRefGoogle Scholar
  28. 28.
    Mukherjee N, Sinha A, Khan G G, Chandra D, Bhaumik A, Mondal A. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique. Materials Research Bulletin, 2011, 46(1): 6–11CrossRefGoogle Scholar
  29. 29.
    Xu H L, Wang W Z, Zhu W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Materials Letters, 2006, 60(17–18): 2203–2206CrossRefGoogle Scholar
  30. 30.
    Ghezelbash A, Korgel B A. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir, 2005, 21(21): 9451–9456CrossRefGoogle Scholar
  31. 31.
    Xie Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli P D. Metallic-like stoichiometric copper sulfide nanocrystals: Phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano, 2013, 7(8): 7352–7369CrossRefGoogle Scholar
  32. 32.
    Liu J, Xue D F. Rapid and scalable route to CuS biosensors: A microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry, 2011, 21(1): 223–228CrossRefGoogle Scholar
  33. 33.
    Ghahremaninezhad A, Asselin E, Dixon D G. One-step templatefree electrosynthesis of 300 mm long copper sulfide nanowires. Electrochemistry Communications, 2011, 13(1): 12–15CrossRefGoogle Scholar
  34. 34.
    Wang F F, Dong H, Pan J L, Li J J, Li Q, Xu D S. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. Journal of Physical Chemistry C, 2014, 118(34): 19589–19598CrossRefGoogle Scholar
  35. 35.
    Ohtani T, Motoki M, Koh K, Ohshima K. Synthesis of binary copper chalcogenides by mechanical alloying. Materials Research Bulletin, 1995, 30(12): 1495–1504CrossRefGoogle Scholar
  36. 36.
    Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Allsolid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochemistry Communications, 2003, 5(8): 701–705CrossRefGoogle Scholar
  37. 37.
    Baláž M, Zorkovská A, Urakaev F, Baláž P, Briancin J, Bujnáková Z, Achimovicová M, Gock E. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842CrossRefGoogle Scholar
  38. 38.
    Zhang B, Ge Z, Yu Z, Liu Y. CN Patent, 102320647 A, 2012–01–18Google Scholar
  39. 39.
    Wang K, Tan G L. Synthesis and optical properties of CuS nanocrystals by mechanical alloying process. Current Nanoscience, 2010, 6(2): 163–168CrossRefGoogle Scholar
  40. 40.
    Kristl M, Ban I, Gyergyek S. Preparation of nanosized copper and cadmium chalcogenides by mechanochemical synthesis. Materials and Manufacturing Processes, 2013, 28(9): 1009–1013Google Scholar
  41. 41.
    Gmelins Handbuch der Anorganischen Chemie. Vol 60, Teil B: Kupfer. Weinheim: Verlag Chemie, GmbH, 1958, 424 (in German)Google Scholar
  42. 42.
    Blachnik R, Muller A. The formation of Cu2S from the elements I. Copper used in form of powders. Thermochimica Acta, 2000, 361 (1-2): 31–52CrossRefGoogle Scholar
  43. 43.
    Földvári M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, Vol 213. Occasional Papers of the Geological Institute of Hungary. Geological Institute of Hungary, 2011, 177Google Scholar
  44. 44.
    Dunn J G, Muzenda C. Thermal oxidation of covellite (CuS). Thermochimica Acta, 2001, 369(1-2): 117–123CrossRefGoogle Scholar
  45. 45.
    Berg L G, Shlyapkina E N. Characteristic features of sulfide mineral DTA. Journal of Thermal Analysis, 1975, 8(3): 417–426CrossRefGoogle Scholar
  46. 46.
    Tesfaye F, Lindberg D, Taskinen P. The Cu-Ni-S System and Its Significance in Metallurgical Processes. In: Allanore A, Barlett L, Wang C, Zhang L, Lee J, eds. EPD Congress 2016. Berlin: Springer International Publishing, 2016, 29–37Google Scholar
  47. 47.
    Zhang J, Zhang Z. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(16): 2279–2281CrossRefGoogle Scholar
  48. 48.
    Haram S K, Mahadeshwar A R, Dixit S G. Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. Journal of Physical Chemistry, 1996, 100(14): 5868–5873CrossRefGoogle Scholar
  49. 49.
    Dixit S G, Mahadeshwar A R, Haram S K. Some aspects of the role of surfactants in the formation of nanoparticles. Colloid Surface A, 1998, 133(1–2): 69–75CrossRefGoogle Scholar
  50. 50.
    Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8–9): 1693–1697CrossRefGoogle Scholar
  51. 51.
    Li F, Wu J F, Qin Q H, Li Z, Huang X T. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology, 2010, 198(2): 267–274CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcela Achimovicová
    • 1
    • 2
    Email author
  • Erika Dutková
    • 2
  • Erika Tóthová
    • 2
  • Zdenka Bujnáková
    • 2
  • Jaroslav Briancin
    • 2
  • Satoshi Kitazono
    • 3
  1. 1.Institute of Mineral and Waste Processing, Waste Disposal and GeomechanicsClausthal University of TechnologyClausthalGermany
  2. 2.Institute of GeotechnicsSlovak Academy of SciencesKošiceSlovakia
  3. 3.Nakase RefineryNihon Seiko Co., Ltd., Yabu-shiHyogoJapan

Personalised recommendations