Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 3, pp 400–408 | Cite as

Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties

  • Wolfgang Bauer
  • Tanja Ossiander
  • Birgit Weber
Research Article
  • 25 Downloads

Abstract

The synthesis of new Schiff base-like ligands with asymmetric substituents pattern and their iron complexes with pyridine as axial ligand is described. Two of the ligands and one of the iron(II) complexes were characterized by single crystal X-ray structure analysis. One of the the iron(II) complexes shows spin crossover behavior while the others remain in the high spin state. The influence of the reduced symmetry of the ligand on the properties of the complexes is discussed.

Keywords

iron Schiff base-like ligands magnetism spin crossover X-ray structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The experiments described in this work were done at the LMU München while data treatment and writing of the manuscript was done at the University of Bayreuth. We gratefully acknowledge support from both universities.

Supplementary material

11705_2018_1753_MOESM1_ESM.pdf (775 kb)
Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties

References

  1. 1.
    Catala L, Mallah T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coordination Chemistry Reviews, 2017, 346: 32–61CrossRefGoogle Scholar
  2. 2.
    Ferrando-Soria J, Vallejo J, Castellano M, Martínez-Lillo J, Pardo E, Cano J, Castro I, Lloret F, Ruiz-García R, Julve M. Molecular magnetism, quo vadis?: A historical perspective from a coordination chemist viewpoint. Coordination Chemistry Reviews, 2017, 339: 17–103CrossRefGoogle Scholar
  3. 3.
    Miller J S. Magnetically ordered molecule-based materials. Chemical Society Reviews, 2011, 40(6): 3266–3296CrossRefGoogle Scholar
  4. 4.
    Sieklucka B, Pinkowicz D. Molecular Magnetic Materials.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 1–483CrossRefGoogle Scholar
  5. 5.
    Gaspar A B, Weber B. Spin Crossover Phenomenon in Coordination Compounds. In: Molecular Magnetic Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 231–252Google Scholar
  6. 6.
    Halcrow M A. Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 1–546CrossRefGoogle Scholar
  7. 7.
    Feltham H L, Barltrop A S, Brooker S. Spin crossover in iron(II) complexes of 3,4,5-tri-substituted-1,2,4-triazole (Rdpt), 3,5-disubstituted-1,2,4-triazolate (dpt-), and related ligands. Coordination Chemistry Reviews, 2017, 344: 26–53CrossRefGoogle Scholar
  8. 8.
    Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 335: 28–43CrossRefGoogle Scholar
  9. 9.
    Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346: 123–138CrossRefGoogle Scholar
  10. 10.
    Senthil Kumar K, Ruben M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coordination Chemistry Reviews, 2017, 346: 176–205CrossRefGoogle Scholar
  11. 11.
    Harding D J, Harding P, Phonsri W. Spin crossover in iron(III) complexes. Coordination Chemistry Reviews, 2016, 313: 38–61CrossRefGoogle Scholar
  12. 12.
    Brooker S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chemical Society Reviews, 2015, 44(10): 2880–2892CrossRefGoogle Scholar
  13. 13.
    Gütlich P, Gaspar A B, Garcia Y. Spin state switching in iron coordination compounds. Beilstein Journal of Organic Chemistry, 2013, 9: 342–391CrossRefGoogle Scholar
  14. 14.
    Jureschi C-M, Linares J, Boulmaali A, Dahoo P R, Rotaru A, Garcia Y. Pressure and temperature sensors using two spin crossover materials. Sensors, 2016, 16: 187/1–187/9CrossRefGoogle Scholar
  15. 15.
    Gütlich P, Goodwin H. Spin Crossover in Transition Metal Compounds I–III. Heidelberg: Springer, 2004, 1–294Google Scholar
  16. 16.
    Boillot M L, Weber B. Mononuclear ferrous and ferric complexes. Comptes Rendus. Chimie, 2018 (Online). doi: 10.1016/j. crci.2018.01.006Google Scholar
  17. 17.
    Weber B, Bauer W, Obel J. An iron(II) spin-crossover complex with a 70 K wide thermal hysteresis loop. Angewandte Chemie International Edition, 2008, 47(52): 10098–10101CrossRefGoogle Scholar
  18. 18.
    Levchenko G G, Bukin G V, Gaspar A B, Real J A. The pressureinduced spin transition in the Fe(phen)2(NCS)2 model compound. Russian Journal of Physical Chemistry A, 2009, 83(6): 951–954CrossRefGoogle Scholar
  19. 19.
    Nowak R, Prasetyanto E A, de Cola L, Bojer B, Siegel R, Senker J, Rössler E, Weber B. Proton-driven coordination-induced spin state switch (PD-CISSS) of iron(II) complexes. Chemical Communications, 2017, 53(5): 971–974CrossRefGoogle Scholar
  20. 20.
    Baldé C, Bauer W, Kaps E, Neville S, Desplanches C, Chastanet G, Weber B, Létard J F. Light-induced excited spin-state properties in 1D iron(II) chain compounds. European Journal of Inorganic Chemistry, 2013, 2013: 2744–2750CrossRefGoogle Scholar
  21. 21.
    Gaspar A B, Seredyuk M. Spin crossover in soft matter. Coordination Chemistry Reviews, 2014, 268: 41–58CrossRefGoogle Scholar
  22. 22.
    Luo Y H, Liu Q L, Yang L J, Sun Y, Wang J W, You C Q, Sun B W. Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(34): 8061–8069CrossRefGoogle Scholar
  23. 23.
    Romero-Morcillo T, Seredyuk M, Munoz M C, Real J A. Meltable spin transition molecular materials with tunable Tc and hysteresis loop width. Angewandte Chemie International Edition, 2015, 54 (49): 14777–14781CrossRefGoogle Scholar
  24. 24.
    Gandolfi C, Morgan G G, Albrecht M. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing. Dalton Transactions, 2012, 41(13): 3726–3730CrossRefGoogle Scholar
  25. 25.
    Garcia Y, Su B-L, Komatsu Y, Kato K, Yamamoto Y, Kamihata H, Lee Y H, Fuyuhiro A, Kawata S, Hayami S. Spin-crossover behaviors based on intermolecular interactions for cobalt(II) complexes with long alkyl chains. European Journal of Inorganic Chemistry, 2012, 2012: 2769–2775CrossRefGoogle Scholar
  26. 26.
    Schlamp S, Weber B, Naik A D, Garcia Y. Cooperative spin transition in a lipid layer like system. Chemical Communications, 2011, 47(25): 7152–7154CrossRefGoogle Scholar
  27. 27.
    Schlamp S, Thoma P, Weber B. Influence of the alkyl chain length on the self-assembly of amphiphilic iron complexes: An analysis of X-ray structures. Chemistry, 2014, 20(21): 6462–6473CrossRefGoogle Scholar
  28. 28.
    Bodenthin Y, Schwarz G, Tomkowicz Z, Lommel M, Geue T, Haase W, Möhwald H, Pietsch U, Kurth D G. Spin-crossover phenomena in extended multi-component metallo-supramolecular assemblies. Coordination Chemistry Reviews, 2009, 253(19–20): 2414–2422CrossRefGoogle Scholar
  29. 29.
    Gaspar A B, Seredyuk M, Gütlich P. Spin crossover in metallomesogens. Coordination Chemistry Reviews, 2009, 253 (19–20): 2399–2413CrossRefGoogle Scholar
  30. 30.
    Zein S, Borshch S A. Energetics of binuclear spin transition complexes. Journal of the American Chemical Society, 2005, 127 (46): 16197–16201CrossRefGoogle Scholar
  31. 31.
    Lochenie C, Schötz K, Panzer F, Kurz H, Maier B, Puchtler F, Agarwal S, Köhler A, Weber B. Spin-crossover iron(II) coordination polymer with fluorescent properties: Correlation between emission properties and spin state. Journal of the American Chemical Society, 2018, 140(2): 700–709CrossRefGoogle Scholar
  32. 32.
    Kurz H, Lochenie C, Wagner K G, Schneider S, Karg M, Weber B. Synthesis and optical properties of phenanthroline-derived Schiff base-like dinuclear Ru(II)-Ni(II) complexes. Chemistry, 2018, 24 (20): 5100–5111CrossRefGoogle Scholar
  33. 33.
    Schäfer B, Bauer T, Faus I, Wolny J A, Dahms F, Fuhr O, Lebedkin S, Wille H C, Schlage K, Chevalier K, et al.. A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 2017, 46(7): 2289–2302CrossRefGoogle Scholar
  34. 34.
    Shepherd H J, Quintero C M, Molnár G, Salmon L, Bousseksou A. Luminescent Spin-Crossover Materials. In: Spin-Crossover Materials. Chichester: John Wiley & Sons Ltd, 2013, 347–373CrossRefGoogle Scholar
  35. 35.
    Hasegawa M, Renz F, Hara T, Kikuchi Y, Fukuda Y, Okubo J, Hoshi T, Linert W. Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 2002, 277(1): 21–30CrossRefGoogle Scholar
  36. 36.
    Faulmann C, Jacob K, Dorbes S, Lampert S, Malfant I, Doublet M L, Valade L, Real J A. Electrical conductivity and spin crossover: A new achievement with a metal bis dithiolene complex. Inorganic Chemistry, 2007, 46(21): 8548–8559CrossRefGoogle Scholar
  37. 37.
    Dorbes S, Valade L, Real J A, Faulmann C. [Fe(sal2-trien)][Ni(dmit) 2]: Towards switchable spin crossover molecular conductors. Chemical Communications, 2005, (1): 69–71Google Scholar
  38. 38.
    Chen Y C, Meng Y, Ni Z P, Tong M L. Synergistic electrical bistability in a conductive spin crossover heterostructure. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(5): 945–949CrossRefGoogle Scholar
  39. 39.
    Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H. Lightinduced spin-crossover magnet. Nature Chemistry, 2011, 3(7): 564–569CrossRefGoogle Scholar
  40. 40.
    Suleimanov I, Kraieva O, Sánchez Costa J, Fritsky I O, Molnár G, Salmon L, Bousseksou A. Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(19): 5026–5032CrossRefGoogle Scholar
  41. 41.
    Kraieva O, Suleimanov I, Molnár G, Salmon L, Bousseksou A. CdTe quantum dot fluorescence modulation by spin crossover. Magnetochemistry, 2016, 2(1): 11CrossRefGoogle Scholar
  42. 42.
    Quintero C M, Gural’skiy I A, Salmon L, Molnar G, Bergaud C, Bousseksou A. Soft lithographic patterning of spin crossover complexes. Part 1: Fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 2012, 22(9): 3745–3751Google Scholar
  43. 43.
    Weber B. Synthesis of coordination polymer nanoparticles using self-assembled block copolymers as template. Chemistry, 2017, 23 (72): 18093–18100CrossRefGoogle Scholar
  44. 44.
    Klimm O, Göbel C, Rosenfeldt S, Puchtler F, Miyajima N, Marquardt K, Drechsler M, Breu J, Förster S, Weber B. Synthesis of Fe(L)(bipy)n spin crossover nanoparticles using blockcopolymer micelles. Nanoscale, 2016, 8(45): 19058–19065CrossRefGoogle Scholar
  45. 45.
    Fitzpatrick A J, O’Connor H M, Morgan G G. A room temperature spin crossover ionic liquid. Dalton Transactions, 2015, 44(48): 20839–20842CrossRefGoogle Scholar
  46. 46.
    Okuhata M, Funasako Y, Takahashi K, Mochida T. A spincrossover ionic liquid from the cationic iron(III) Schiff base complex. Chemical Communications, 2013, 49(69): 7662–7664CrossRefGoogle Scholar
  47. 47.
    Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon J R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357: 144–172CrossRefGoogle Scholar
  48. 48.
    Altomare A, Burla M C, Camalli M, Cascarano G L, Giacovazzo C, Guagliardi A, Moliterni A G G, Polidori G, Spagna R. SIR97: A new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 1999, 32(1): 115–119CrossRefGoogle Scholar
  49. 49.
    Sheldrick G M. A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 2008, 64(1): 112–122CrossRefGoogle Scholar
  50. 50.
    Farrugia L. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 1997, 30(5): 565CrossRefGoogle Scholar
  51. 51.
    Johnson C K, Burnett M N. ORTEP-III. Oak-Ridge: Oak-Ridge National Laboratory, 1996Google Scholar
  52. 52.
    Keller E. Schakal-99. Freiburg: University of Freiburg, 1999Google Scholar
  53. 53.
    Kahn O. Molecular Magnetism. New York: VCH, 1993, 1–380Google Scholar
  54. 54.
    Becker H G O. Organikum, 19th ed. Berlin: Johann Ambrosius Barth, 1993, 1–786Google Scholar
  55. 55.
    Jäger E G. “Bioinspired” metal complexes of macrocyclic [N42-] and open chain [N2O22-] Schiff base ligands—a link between porphyrins and salicylaldimines. In: Chemistry At The Beginning of The Third Millennium: Molecular Design, Supramolecules, Nanotechnology, And Beyond. Berlin: Springer, 2000, 103–138Google Scholar
  56. 56.
    Jäger E G. Koordinierte und freie Estergruppen in stabilen Metallchelaten. Zeitschrift fur Anorganische und Allgemeine Chemie, 1967, 349: 139–150CrossRefGoogle Scholar
  57. 57.
    Claisen L. Untersuchungen über die Oxymethylenverbindungen. Justus Liebigs Annalen der Chemie, 1897, 297(1–2): 1–98Google Scholar
  58. 58.
    Weber B, Betz R, Bauer W, Schlamp S. Crystal structure of iron(II) acetate. Zeitschrift fur Anorganische und Allgemeine Chemie, 2011, 637(1): 102–107CrossRefGoogle Scholar
  59. 59.
    Holleman A F, Wiberg E, Wiberg N. Lehrbuch der anorganischen Chemie, 101st ed. Berlin: de Gruyter, 1995, 1–2149Google Scholar
  60. 60.
    Weber B, Jäger E-G. Structure and magnetic properties of iron(II/III) complexes with N2O22-coordinating Schiff base like ligands. European Journal of Inorganic Chemistry, 2009, 2009: 465–477CrossRefGoogle Scholar
  61. 61.
    Bauer W, Ossiander T, Weber B. A promising new Schiff base-like ligand for the synthesis of octahedral iron(II) spin crossover complexes. Zeitschrift für Naturforschung B, 2010, 2010: 323–328CrossRefGoogle Scholar
  62. 62.
    Lochenie C, Heinz J, Milius W, Weber B. Iron(II) spin crossover complexes with diaminonaphthalene-based Schiff base-like ligands: Mononuclear complexes. Dalton Transactions, 2015, 44(41): 18065–18077CrossRefGoogle Scholar
  63. 63.
    Dankhoff K, Weber B. Novel Cu(II) complexes with NNO-Schiff base-like ligands—structures and magnetic properties. CrystEng-Comm, 2018, 20(6): 818–828CrossRefGoogle Scholar
  64. 64.
    Weber B, Kaps E, Obel J, Bauer W. Synthesis and magnetic properties of new octahedral iron(II) complexes. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(8): 1421–1426CrossRefGoogle Scholar
  65. 65.
    Weber B, Obel J, Henner-Vasquez D, Bauer W. Two new iron(II) spin-crossover complexes with N4O2 coordination sphere and spin transition around room temperature. European Journal of Inorganic Chemistry, 2009, 2009: 5527–5534CrossRefGoogle Scholar
  66. 66.
    Pfaffeneder T M, Thallmair S, Bauer W, Weber B. Complete and incomplete spin transitions in 1D chain iron(II) compounds. New Journal of Chemistry, 2011, 35(3): 691–700CrossRefGoogle Scholar
  67. 67.
    Bauer W, Pfaffeneder T, Achterhold K, Weber B. Complete twostep spin-transition in a 1D chain iron(II) complex with a 110-K wide intermediate plateau. European Journal of Inorganic Chemistry, 2011, 2011: 3183–3192CrossRefGoogle Scholar
  68. 68.
    Schlamp S, Thoma P, Weber B. New octahedral, head-tail iron(II) complexes with spin crossover properties. European Journal of Inorganic Chemistry, 2012, 2012: 2759–2768CrossRefGoogle Scholar
  69. 69.
    Weber B. Spin crossover complexes with N4O2 coordination sphere—the influence of covalent linkers on cooperative interactions. Coordination Chemistry Reviews, 2009, 253(19–20): 2432–2449CrossRefGoogle Scholar
  70. 70.
    Göbel C, Klimm O, Puchtler F, Rosenfeldt S, Förster S, Weber B. Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles. Beilstein Journal of Nanotechnology, 2017, 8: 1318–1327CrossRefGoogle Scholar
  71. 71.
    Nowak R, Bauer W, Ossiander T, Weber B. Slow self-assembly favours hysteresis above room temperature for an iron(II) 1D-chain spin-crossover complex. European Journal of Inorganic Chemistry, 2013, 2013: 975–983CrossRefGoogle Scholar
  72. 72.
    Weber B, Kaps E S, Desplanches C, Létard J-F. Quenching the hysteresis in single crystals of a 1D chain iron(II) spin crossover complex. European Journal of Inorganic Chemistry, 2008, 2008: 2963–2966CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BayreuthBayreuthGermany

Personalised recommendations