Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 4, pp 832–834 | Cite as

SCRaMbLE drive application of synthetic yeast genome

  • Jin Jin
  • Yuan Ma
  • Duo LiuEmail author
Views & Comments
  • 5 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science, 2002, 297(5583): 1016–1018CrossRefGoogle Scholar
  2. 2.
    Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56CrossRefGoogle Scholar
  3. 3.
    III Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253CrossRefGoogle Scholar
  4. 4.
    Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano M G, Moosburner M, et al. Design, synthesis, and testing toward a 57-codon genome. Science, 2016, 353(6301): 819–822CrossRefGoogle Scholar
  5. 5.
    Annaluru N, Muller H, Mitchell L A, Ramalingam S, Stracquadanio G, Richardson S M, Dymond J S, Kuang Z, Scheifele L Z, Cooper E M, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344(6179): 55–58CrossRefGoogle Scholar
  6. 6.
    Richardson S M, Mitchell L A, Stracquadanio G, Yang K, Dymond J S, DiCarlo J E, Lee D, Huang C L, Chandrasegaran S, Cai Y, et al. Design of a synthetic yeast genome. Science, 2017, 355(6329): 1040–1044CrossRefGoogle Scholar
  7. 7.
    Mitchell L A, Wang A, Stracquadanio G, Kuang Z, Wang X Y, Yang K, Richardson S, Martin J A, Zhao Y, Walker R, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: SynVI and beyond. Science, 2017, 355(6329): eaaf4831CrossRefGoogle Scholar
  8. 8.
    Shen Y, Wang Y, Chen T, Gao F, Gong J H, Abramczyk D, Walker R, Zhao H C, Chen S H, Liu W, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329): eaaf4791CrossRefGoogle Scholar
  9. 9.
    Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355 (6329): eaaf4706CrossRefGoogle Scholar
  10. 10.
    Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M, et al.“Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355 (6329): eaaf4704 1046CrossRefGoogle Scholar
  11. 11.
    Zhang W M, Zhao G H, Luo Z Q, Lin Y C, Wang L H, Guo Y K, Wang A, Jiang S Y, Jiang Q W, Gong J H, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 2017, 355 (6329): eaaf3981CrossRefGoogle Scholar
  12. 12.
    Xie Z X, Liu D, Li B Z, Zhao M, Zeng B X, Wu Y, Shen Y, Lin T, Yang P, Dai J, et al. Design and chemical synthesis of eukaryotic chromosomes. Chemical Society Reviews, 2017, 46(23): 7191–7207CrossRefGoogle Scholar
  13. 13.
    Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Jia N, Li B, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 1933, 2018(9): 1–13Google Scholar
  14. 14.
    Wu Y, Zhu R Y, Mitchell L A, Ma L, Liu R, Zhao M. In vitro DNA SCRaMbLE. Nature Communications, 1935, 2018(9): 1–9Google Scholar
  15. 15.
    Shen M J, Wu Y, Yang K, Li Y X, Xu H, Zhang H R, Li X, Xiao W H, Zhou X, Mitchell L A, et al. Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 1934, 2018 (9): 1–8Google Scholar
  16. 16.
    Ramy R E, Magroun N, Messadecq N, Gauthier L, Boussin F, Dantzer F. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nature Communications, 1932, 2018(9): 1–10Google Scholar
  17. 17.
    Luo Z Q, Wang L H, Wang Y, Zhang WM, Guo Y K, Shen Y, Jiang L H, Wu Q Y, Zhang C, Cai Y Z, et al. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nature Communications, 1930, 2018(9): 1–10Google Scholar
  18. 18.
    Liu W, Luo Z Q, Wang Y, Pham N T, Tuck L, Pérez-Pi I, Liu L Y, Shen Y, French C, Auer M, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE- in methods. Nature Communications, 1936, 2018(9): 1–12Google Scholar
  19. 19.
    Hochrein L, Mitchell L A, Schulz K, Messerschmidt K. Muellerroeber B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nature Communications, 1931, 2018(9): 1–10Google Scholar
  20. 20.
    Wang J, Jia B, Xie Z X, Yuan Y J. Improving prodeoxyviolacein production via Multiplex SCRaMbLE Iterative Cycles. Frontiers of Chemical Science and Engineering, 2018 (Online First), doi: 10.1007/s11705-018-1739-2Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations