Frontiers of Chemical Science and Engineering

, Volume 12, Issue 4, pp 806–814 | Cite as

Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles

  • Juan Wang
  • Bin Jia
  • Zexiong Xie
  • Yunxiang Li
  • Yingjin YuanEmail author
Research Article


The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system has been used to improve prodeoxyviolacein (PDV) production in haploid yeast containing chromosome synV. To rapidly and continuously generate genome diversification with the desired phenotype, the multiplex SCRaMbLE iterative cycle strategy has been developed for the screening of high PDV production strains. Wholegenome sequencing analysis reveals large duplications, deletions, and even the whole genome duplications. The deletion of YER151C is proved to be responsible for the increase. This study demonstrates that artificial DNA rearrangement can be used to accelerate microbial evolution and the production of biobased chemicals.


synthetic biology genome rearrangement prodeoxyviolacein SCRaMbLE Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the National Program on Key Basic Research Project of China (2014CB745100) and the National Natural Science Foundation of China (21750001 and 21621004) for funding.

Supplementary material

11705_2018_1739_MOESM1_ESM.pdf (505 kb)
Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles


  1. 1.
    Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J B, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476CrossRefGoogle Scholar
  2. 2.
    Yue J X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino M C, et al. Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49(6): 913–924CrossRefGoogle Scholar
  3. 3.
    Zhang Q J, Zhu T, Xia E H, Shi C, Liu Y L, Zhang Y, Liu Y, Jiang W K, Zhao Y J, Mao S Y, et al. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Nucleic Acids Research, 2014, 111(46): e4954–e4962Google Scholar
  4. 4.
    Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Research, 2003, 13(1): 37–45CrossRefGoogle Scholar
  5. 5.
    Redon R, Ishikawa S, Fitch K R, Feuk L, George H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W W, et al. Global variation in copy number in the human genome. Nature, 2006, 444(7118): 444–454CrossRefGoogle Scholar
  6. 6.
    Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, Del Cardayré S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646CrossRefGoogle Scholar
  7. 7.
    Biot-Pelletier D, Martin V J J. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 2014, 98(9): 3877–3887CrossRefGoogle Scholar
  8. 8.
    Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M, et al. “Perfect” designer chromosome V and behavior of a ring derivative. Science, 2017, 355(6329): 1046CrossRefGoogle Scholar
  9. 9.
    Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X, et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 2017, 355(6329): 1048CrossRefGoogle Scholar
  10. 10.
    Durán N, Justo G Z, Durán M, Brocchi M, Cordi L, Tasic L, Castro G R, Nakazato G. Advances in chromobacterium violaceum and properties of violacein—its main secondary metabolite: A review. Biotechnology Advances, 2016, 34(5): 1030–1045CrossRefGoogle Scholar
  11. 11.
    Melo P S, Maria S S, Vidal B C, Haun M, Durán N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cellular & Developmental Biology, 2000, 36(8): 539–543CrossRefGoogle Scholar
  12. 12.
    Konzen M, De Marco D, Cordova C A S, Vieira T O, Antônio R V, Creczynski-Pasa T B. Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 2006, 14(24): 8307–8313CrossRefGoogle Scholar
  13. 13.
    Durán N, Antonio R V, Haun M, Pilli R A. Biosynthesis of a trypanocide by Chromobacterium violaceum. World Journal of Microbiology & Biotechnology, 1994, 10(6): 686–690CrossRefGoogle Scholar
  14. 14.
    Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 2010, 17(3–4): 300–304CrossRefGoogle Scholar
  15. 15.
    Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expressionlevel optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678CrossRefGoogle Scholar
  16. 16.
    Lin Q, Jia B, Mitchell L A, Luo J C, Yang K, Zeller K I, Zhang W Q, Xu Z W, Stracquadanio G, Bader J S, Boeke J D, Yuan Y J. RADOM, an Efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synthetic Biology, 2014, 4(3): 213–220CrossRefGoogle Scholar
  17. 17.
    Liu D, Liu H, Li B Z, Qi H, Jia B, Zhou X, Du H X, Zhang W, Yuan Y J. Multigene pathway engineering with regulatory linkers (MPERL). ACS Synthetic Biology, 2016, 5(12): 1535–1545CrossRefGoogle Scholar
  18. 18.
    Knaggs A R. The biosynthesis of shikimate metabolites. Natural Product Reports, 2003, 20(1): 119–136CrossRefGoogle Scholar
  19. 19.
    Zalatan J G, Lee M, Almeida E R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350CrossRefGoogle Scholar
  20. 20.
    Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Liu H M, Chen Z X, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nature Communications, 2018, 9(1): 1933CrossRefGoogle Scholar
  21. 21.
    Querol A, Fernández-Espinar M T, Del Olmo M, Barrio E. Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86(1–2): 3–10CrossRefGoogle Scholar
  22. 22.
    Gatti L, Hoe K L, Hayles J, Righetti S C, Carenini N B, Laura D, Kim D U, Park H O, Perego P. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12(1): 44CrossRefGoogle Scholar
  23. 23.
    Dodgson S E, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase UBP3 confers aneuploidy tolerance. Genes & Development, 2016, 30(20): 2259–2271CrossRefGoogle Scholar
  24. 24.
    Liu D, Li B Z, Liu H, Guo X J, Yuan Y J. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 117–125CrossRefGoogle Scholar
  25. 25.
    Wang R Z, Gu X L, Yao M D, Pan C H, Liu H, Xiao W H, Wang Y, Yuan Y J. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89–99CrossRefGoogle Scholar
  26. 26.
    Yuan Y J, Wu J C, Wang X. Collaborations of China with the world in Synbio. Frontiers of Chemical Science and Engineering, 2017, 11(1): 1–2CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Wang
    • 1
    • 2
  • Bin Jia
    • 1
    • 2
  • Zexiong Xie
    • 1
    • 2
  • Yunxiang Li
    • 1
    • 2
  • Yingjin Yuan
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina

Personalised recommendations