Frontiers of Chemical Science and Engineering

, Volume 11, Issue 4, pp 603–612 | Cite as

Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation

  • Huanhuan Shang
  • Xiaoman Zhang
  • Jing XuEmail author
  • Yifan Han
Research Article


CO oxidation has been investigated on three CuO/CeO2 catalysts prepared by impregnation, co-precipitation and mechanical mixing. The origin of active sites was explored by the multiple techniques. The catalyst prepared by impregnation has more highly dispersed CuO and stronger interactions between CuO and CeO2 to promote the reduction of CuO to Cu+ species at the Cu-Ce interface, leading to its highest catalytic activity. For the catalyst prepared by co-precipitation, solid solution structures observed in Raman spectra suppress the formation of the Cu-Ce interface, where the adsorbed CO will react with active lattice oxygen to form CO2, and thus it displays a lower catalytic performance. No Cu-Ce interface exists in the catalyst prepared by the mechanical mixing method due to the separate phases of CuO and CeO2, resulting in its lowest activity among the three catalysts.


CuO/CeO2 CO oxidation interfaces structure-performance relationship active sites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the support from the National Natural Science Foundation of China (21576084, U1463205 and 91534127), and the Chinese Education Ministry 111 project (B08021).

Supplementary material

11705_2017_1661_MOESM1_ESM.pdf (141 kb)
Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation


  1. 1.
    Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem, 2011, 3(1): 24–65CrossRefGoogle Scholar
  2. 2.
    Prasad R, Singh P. A review on CO oxidation over copper chromite catalyst. Catalysis Reviews. Science and Engineering, 2012, 54(2): 224–279Google Scholar
  3. 3.
    McClure S M, Goodman D W. New insights into catalytic CO oxidation on Pt-group metals at elevated pressures. Chemical Physics Letters, 2009, 469(1-3): 1–13CrossRefGoogle Scholar
  4. 4.
    Fernández-García M, Martínez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. Influence of ceria on Pd activity for the CO + O2 reaction. Journal of Catalysis, 1999, 187(2): 474–485CrossRefGoogle Scholar
  5. 5.
    Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408CrossRefGoogle Scholar
  6. 6.
    Avgouropoulos G, Ioannides T, Matralis H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Applied Catalysis B: Environmental, 2005, 56(1-2): 87–93CrossRefGoogle Scholar
  7. 7.
    Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W. Carbon monoxide oxidation over CuO/CeO2 catalysts. Catalysis Today, 2004, 93–95: 191–198CrossRefGoogle Scholar
  8. 8.
    Jia A P, Jiang S Y, Lu J Q, Luo MF. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation. Journal of Physical Chemistry C, 2010, 114(49): 21605–21610CrossRefGoogle Scholar
  9. 9.
    Liu W, Flytzanistephanopoulos M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. Journal of Catalysis, 1995, 153(2): 304–316CrossRefGoogle Scholar
  10. 10.
    Kummer J T. Catalysts for automobile emission control. Progress in Energy and Combustion Science, 1980, 6(2): 177–199CrossRefGoogle Scholar
  11. 11.
    Schubert M M, Plzak V, Garche J, Behm R J. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas. Catalysis Letters, 2001, 76(3): 143–150CrossRefGoogle Scholar
  12. 12.
    Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. CO oxidation over supported gold catalysts — “inert” and “active” support materials and their role for the oxygen supply during reaction. Journal of Catalysis, 2001, 197(1): 113–122CrossRefGoogle Scholar
  13. 13.
    Águila G, Gracia F, Araya P. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Applied Catalysis A, General, 2008, 343(1-2): 16–24CrossRefGoogle Scholar
  14. 14.
    Swartz S L. Catalysis by ceria and related materials. Journal of the American Chemical Society, 2002, 124(43): 12923–12924CrossRefGoogle Scholar
  15. 15.
    Konysheva E Y. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity. Frontiers of Chemical Science and Engineering, 2013, 7(3): 249–261CrossRefGoogle Scholar
  16. 16.
    Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews, 1996, 38(4): 439–520CrossRefGoogle Scholar
  17. 17.
    Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S, Matralis H K. A comparative study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today, 2002, 75(1-4): 157–167CrossRefGoogle Scholar
  18. 18.
    Sedmak G, Hočevar S, Levec J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst. Journal of Catalysis, 2003, 213(2): 135–150CrossRefGoogle Scholar
  19. 19.
    Wang W W, Du P P, Zou S H, He H Y, Wang R X, Jin Z, Shi S, Huang Y Y, Si R, Song Q S, Jia C J, Yan C H. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catalysis, 2015, 5(4): 2088–2099CrossRefGoogle Scholar
  20. 20.
    Cargnello M, Doan-Nguyen V V T, Gordon T R, Diaz R E, Stach E A, Gorte R J, Fornasiero P, Murray C B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science, 2013, 341(6147): 771–773CrossRefGoogle Scholar
  21. 21.
    Pue-On P, Meeyoo V, Rirksombooon T. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts. Frontiers of Chemical Science and Engineering, 2013, 7(3): 289–296CrossRefGoogle Scholar
  22. 22.
    Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. CO oxidation over CuO/Ce1-xCuxO2-δ and Ce1-xCuxO2-δ catalysts: Synergetic effects and kinetic study. Journal of Catalysis, 2012, 289(0): 199–209CrossRefGoogle Scholar
  23. 23.
    Bera P, Priolkar K R, Sarode P R, Hegde M S, Emura S, Kumashiro R, Lalla N P. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: Formation of a Ce1-xCuxO2-δ solid solution. Chemistry of Materials, 2002, 14(8): 3591–3601CrossRefGoogle Scholar
  24. 24.
    Weber W H, Hass K C, McBride J R. Raman study of CeO2. Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(1): 178–185Google Scholar
  25. 25.
    Li J, Han Y, Zhu Y, Zhou R. Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuOCeO2 catalysts. Applied Catalysis B: Environmental, 2011, 108-109: 72–80Google Scholar
  26. 26.
    McBride J R, Hass K C, Poindexter B D, Weber W H. Raman and X-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994, 76(4): 2435–2441CrossRefGoogle Scholar
  27. 27.
    Vidal H, Kašpar J, Pijolat M, Colon G, Bernal S, Cordón A, Perrichon V, Fally F. Redox behavior of CeO2-ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts. Applied Catalysis B: Environmental, 2000, 27(1): 49–63CrossRefGoogle Scholar
  28. 28.
    Davó-Quiñonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson J A. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catalysis, 2016, 6(3): 1723–1731CrossRefGoogle Scholar
  29. 29.
    Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z. Low-temperature CO oxidation on CuO/CeO2 catalysts: The significant effect of copper precursor and calcination temperature. Catalysis Science & Technology, 2015, 5(6): 3166–3181CrossRefGoogle Scholar
  30. 30.
    She Y, Zheng Q, Li L, Zhan Y, Chen C, Zheng Y, Lin X. Rare earth oxide modified CuO/CeO2 catalysts for the water-gas shift reaction. International Journal of Hydrogen Energy, 2009, 34(21): 8929–8936CrossRefGoogle Scholar
  31. 31.
    Wang S Y, Li N, Luo L F, Huang W X, Pu Z Y, Wang Y J, Hu G S, Luo M F, Lu J Q. Probing different effects of surface MOy and Mn+ species (M = Cu, Ni, Co, Fe) for xMOy/Ce0.9M0.1-xO2-δ catalysts in CO oxidation. Applied Catalysis B: Environmental, 2014, 144: 325–332CrossRefGoogle Scholar
  32. 32.
    Pu Z Y, Lu J Q, Luo M F, Xie Y L. Study of oxygen vacancies in Ce0.9Pr0.1O2-δ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. Journal of Physical Chemistry C, 2007, 111(50): 18695–18702CrossRefGoogle Scholar
  33. 33.
    Liu Z, Wu Z, Peng X, Binder A, Chai S, Dai S. Origin of active oxygen in a ternary CuOx/Co3O4-CeO2 catalyst for CO oxidation. Journal of Physical Chemistry C, 2014, 118(48): 27870–27877CrossRefGoogle Scholar
  34. 34.
    Sasikala R, Varma S, Gupta N M, Kulshreshtha S K. Reduction behavior of Ce-Y mixed oxides. Journal of Materials Science Letters, 2001, 20(12): 1131–1133CrossRefGoogle Scholar
  35. 35.
    Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265CrossRefGoogle Scholar
  36. 36.
    Avgouropoulos G, Ioannides T. Selective CO oxidation over CuOCeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A, General, 2003, 244(1): 155–167CrossRefGoogle Scholar
  37. 37.
    Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246(1): 52–59CrossRefGoogle Scholar
  38. 38.
    Dong Y, Yuan F, Zhu Y, Zhao L, Cai Z. Characterization and catalytic properties of mesoporous CuO/SBA-16 prepared by different impregnation methods. Frontiers of Chemical Engineering in China, 2008, 2(2): 150–154CrossRefGoogle Scholar
  39. 39.
    Bin F, Wei X, Li B, Hui K S. Self-sustained combustion of carbon monoxide promoted by the Cu-Ce/ZSM-5 catalyst in CO/O2/N2 atmosphere. Applied Catalysis B: Environmental, 2015, 162(0): 282–288CrossRefGoogle Scholar
  40. 40.
    Elmhamdi A, Castañeda R, Kubacka A, Pascual L, Nahdi K, Martínez-Arias A. Characterization and catalytic properties of CuO/ CeO2/MgAl2O4 for preferential oxidation of CO in H2-rich streams. Applied Catalysis B: Environmental, 2016, 188: 292–304CrossRefGoogle Scholar
  41. 41.
    Martínez-Arias A, Hungría A B, Munuera G, Gamarra D. Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream. Applied Catalysis B: Environmental, 2006, 65(3-4): 207–216CrossRefGoogle Scholar
  42. 42.
    Gamarra D, Fernández-García M, Belver C, Martínez-Arias A. Operando DRIFTS and XANES study of deactivating effect of CO2 on a Ce0.8Cu0.2O2 CO-PROX catalyst. Journal of Physical Chemistry C, 2010, 114(43): 18576–18582CrossRefGoogle Scholar
  43. 43.
    Chen S, Zou H, Liu Z, Lin W. DRIFTS study of different gas adsorption for CO selective oxidation on Cu-Zr-Ce-O catalysts. Applied Surface Science, 2009, 255(15): 6963–6967CrossRefGoogle Scholar
  44. 44.
    Martínez-Arias A, Gamarra D, Fernández-García M, Hornés A, Bera P, Koppány Z, Schay Z. Redox-catalytic correlations in oxidised copper-ceria CO-PROX catalysts. Catalysis Today, 2009, 143(3-4): 211–217CrossRefGoogle Scholar
  45. 45.
    Scarano D, Bordiga S, Lamberti C, Spoto G, Ricchiardi G, Zecchina A, Otero Areán C. FTIR study of the interaction of CO with pure and silica-supported copper(I) oxide. Surface Science, 1998, 411(3): 272–285CrossRefGoogle Scholar
  46. 46.
    Hadjiivanov K I, Kantcheva M M, Klissurski D G. IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: σ and π components of the Cu+-CO bond. Journal of the Chemical Society, Faraday Transactions, 1996, 92(22): 4595–4600CrossRefGoogle Scholar
  47. 47.
    Liu P, Hensen E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035CrossRefGoogle Scholar
  48. 48.
    Wen B, He M. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation. Applied Catalysis B: Environmental, 2002, 37(1): 75–82CrossRefGoogle Scholar
  49. 49.
    Avgouropoulos G, Ioannides T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Applied Catalysis B: Environmental, 2006, 67(1-2): 1–11CrossRefGoogle Scholar
  50. 50.
    Gao Y, Xie K, Wang W, Mi S, Liu N, Pan G, Huang W. Structural features and catalytic performance in CO preferential oxidation of CuO-CeO2 supported on multi-walled carbon nanotubes. Catalysis Science & Technology, 2015, 5(3): 1568–1579CrossRefGoogle Scholar
  51. 51.
    Fan J, Wu X, Wu X, Liang Q, Ran R, Weng D. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance. Applied Catalysis B: Environmental, 2008, 81(1-2): 38–48CrossRefGoogle Scholar
  52. 52.
    Dutta P, Pal S, Seehra M S, Shi Y, Eyring E M, Ernst R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials, 2006, 18(21): 5144–5146CrossRefGoogle Scholar
  53. 53.
    Zhang X M, Deng Y Q, Tian P F, Shang H H, Xu J, Han Y F. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 191: 179–191CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Huanhuan Shang
    • 1
  • Xiaoman Zhang
    • 1
  • Jing Xu
    • 1
    Email author
  • Yifan Han
    • 1
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations