Recent advances in selective acetylene hydrogenation using palladium containing catalysts

  • Alan J. McCue
  • James A. Anderson
Review Article


Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.


acetylene ethylene selective hydrogenation palladium bimetallic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tiedtke D B, Cheung T T P, Leger J, Zisman S A, Bergmeister J J, Delzer G A. In: 13th Ethylene Producers Conference, 2001, 10: 1–21Google Scholar
  2. 2.
    Borodziński A, Bond G C. Selective Hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(2): 91–144CrossRefGoogle Scholar
  3. 3.
    Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 2: Steady—state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469CrossRefGoogle Scholar
  4. 4.
    Nikolaev S A, Zanaveskin I L N, Smirnov V V, Averyanov V A, Zanaveskin K I. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russian Chemical Reviews, 2009, 78(3): 231–247CrossRefGoogle Scholar
  5. 5.
    García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128(4): 663–673CrossRefGoogle Scholar
  6. 6.
    Bridier B, Lopez N, Pérez-Ramírez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39(36): 8412–8419CrossRefGoogle Scholar
  7. 7.
    Segura Y, López N, Pérez-Ramírez J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple-versus double-bond activation. Journal of Catalysis, 2007, 247(2): 383–386CrossRefGoogle Scholar
  8. 8.
    Vilé G, Baudouin D, Remediakis I N, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem, 2013, 5(12): 3750–3759CrossRefGoogle Scholar
  9. 9.
    Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Selective hydrogenation of propyne over supported copper catalysts: Influence of support. Applied Catalysis, 1991, 70(1): 253–262CrossRefGoogle Scholar
  10. 10.
    Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickelbased analogues. Journal of Catalysis, 2010, 269(1): 80–92CrossRefGoogle Scholar
  11. 11.
    Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259(1): 85–95CrossRefGoogle Scholar
  12. 12.
    Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64CrossRefGoogle Scholar
  13. 13.
    Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catalysis Today, 2011, 178(1): 181–186CrossRefGoogle Scholar
  14. 14.
    Lopez-Sanchez J A, Lennon D. The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Applied Catalysis A, General, 2005, 291(1–2): 230–237CrossRefGoogle Scholar
  15. 15.
    García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102CrossRefGoogle Scholar
  16. 16.
    Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. Journal of Catalysis, 2013, 305: 264–276CrossRefGoogle Scholar
  17. 17.
    Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R. Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. Journal of Physical Chemistry B, 2006, 110(10): 4947–4952CrossRefGoogle Scholar
  18. 18.
    Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson S D, Schlögl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89CrossRefGoogle Scholar
  19. 19.
    Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schlögl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299CrossRefGoogle Scholar
  20. 20.
    Sá J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095CrossRefGoogle Scholar
  21. 21.
    Schauermann S, Nilius N, Shaikhutdinov S, Freund H J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681CrossRefGoogle Scholar
  22. 22.
    Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: Role of lowcoordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544CrossRefGoogle Scholar
  23. 23.
    Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: New mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156CrossRefGoogle Scholar
  24. 24.
    Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293CrossRefGoogle Scholar
  25. 25.
    Armbrüster M, Behrens M, Cinquini F, Föttinger K, Grin Y, Haghofer A, Klötzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem, 2012, 4(8): 1048–1063CrossRefGoogle Scholar
  26. 26.
    Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3‐4): 159–164CrossRefGoogle Scholar
  27. 27.
    Johnson M M, Walker D W, Nowack G P. U S Patent, 4404124A, 1983-09-13Google Scholar
  28. 28.
    Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Shapecontrolled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials, 2009, 19(2): 189–200CrossRefGoogle Scholar
  29. 29.
    Yarulin A E, Crespo-Quesada R M, Egorova E V, Kiwi-Minsker L L. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinetics and Catalysis, 2012, 53(2): 253–261CrossRefGoogle Scholar
  30. 30.
    Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L. UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir, 2011, 27(12): 7909–7916CrossRefGoogle Scholar
  31. 31.
    Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–150CrossRefGoogle Scholar
  32. 32.
    He Y F, Feng J T, Du Y Y, Li D Q. Controllable synthesis and acetylene hydrogenation performance of supported pd nanowire and cuboctahedron catalysts. ACS Catalysis, 2012, 2(8): 1703–1710CrossRefGoogle Scholar
  33. 33.
    Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbonsupported palladium catalysts for the hydrogenaiton of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115CrossRefGoogle Scholar
  34. 34.
    Burton P D, Boyle T J, Datye A K. Facile. Surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149CrossRefGoogle Scholar
  35. 35.
    Boudart M, Hwang H S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 1975, 39(1): 44–52CrossRefGoogle Scholar
  36. 36.
    Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146CrossRefGoogle Scholar
  37. 37.
    Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Yoshida H, Fujita S I, Arai M, Panpranot J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. Journal of Molecular Catalysis A Chemical, 2014, 383–384: 182–187CrossRefGoogle Scholar
  38. 38.
    Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catalysis Today, 2014, 245: 134–138CrossRefGoogle Scholar
  39. 39.
    Li Y, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1–2): 173–179CrossRefGoogle Scholar
  40. 40.
    Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A, Chemical, 2014, 395: 137–144CrossRefGoogle Scholar
  41. 41.
    Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16CrossRefGoogle Scholar
  42. 42.
    Shin E W, Choi C H, Chang K S, Na Y H, Moon S H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today, 1998, 44(3): 137–143CrossRefGoogle Scholar
  43. 43.
    Shin EW, Kang J H, Kim WJ, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172CrossRefGoogle Scholar
  44. 44.
    Ahn I Y, Kim W J, Moon S H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Applied Catalysis A, General, 2006, 308: 75–81CrossRefGoogle Scholar
  45. 45.
    Kim W J, Ahn I Y, Lee J H, Moon S H. Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catalysis Communications, 2012, 24: 52–55CrossRefGoogle Scholar
  46. 46.
    McKenna F M, Anderson J A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. Journal of Catalysis, 2011, 281(2): 231–240CrossRefGoogle Scholar
  47. 47.
    McCue A J, Anderson J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science & Technology, 2014, 4(2): 272–294CrossRefGoogle Scholar
  48. 48.
    McKenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chemical Communications, 2011, 47(8): 2351–2353CrossRefGoogle Scholar
  49. 49.
    McKenna F M, Mantarosie L, Wells R P K, Hardacre C, Anderson J A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638CrossRefGoogle Scholar
  50. 50.
    McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459CrossRefGoogle Scholar
  51. 51.
    Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426CrossRefGoogle Scholar
  53. 53.
    Ma C, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene. Journal of Catalysis, 2014, 317: 263–271CrossRefGoogle Scholar
  54. 54.
    Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30CrossRefGoogle Scholar
  55. 55.
    Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene Part 1: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258(1): 210–218CrossRefGoogle Scholar
  56. 56.
    Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schlögl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227CrossRefGoogle Scholar
  57. 57.
    Friedrich M, Villaseca S A, Szentmiklósi L, Teschner D, Armbrüster M. Order-induced selectivity increase of Cu60Pd40 in the semihydrogenation of acetylene. Materials, 2013, 6(7): 2958–2977CrossRefGoogle Scholar
  58. 58.
    Kim S K, Lee J H, Ahn I Y, Kim W J, Moon S H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A, General, 2011, 401(1–2): 12–19CrossRefGoogle Scholar
  59. 59.
    Tierney H L, Baber A E, Kitchin J R, Sykes E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 246102–246104CrossRefGoogle Scholar
  60. 60.
    Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geomretries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212CrossRefGoogle Scholar
  61. 61.
    Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196CrossRefGoogle Scholar
  62. 62.
    McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135CrossRefGoogle Scholar
  63. 63.
    Fu Q, Luo Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation. ACS Catalysis, 2013, 3(6): 1245–1252CrossRefGoogle Scholar
  64. 64.
    McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd coped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890CrossRefGoogle Scholar
  65. 65.
    Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang B W L, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Surface Chemistry and Catalysis Group, Department of ChemistryUniversity of AberdeenAberdeenUK
  2. 2.Materials and Chemical Engineering Group, School of EngineeringUniversity of AberdeenAberdeenUK

Personalised recommendations