Reactivity of triacetone triperoxide and diacetone diperoxide: Insights from nuclear Fukui function

Research Article


Triacetone triperoxide (TATP) is more sensitive than diacetone diperoxide (DADP) in the solid-state explosion. To explain this reactivity difference, we analyzed the electronic structures and properties of the crystals of both compounds by using Ab initio method to calculate the structures of their individual molecules as well as their lattice structures and particularly calculating Nuclear Fukui function to gain insight into the sensitivity of the initial, rate-determining step of their decomposition. Our results indicate that TATP and DADP crystal structures exhibit significantly different electronic properties. Most notably, the electronic structure of the TATP crystal shows asymmetry among its reactive oxygen atoms as supported by magnitudes of their nuclear Fukui functions. The greater explosion sensitivity of crystalline TATP may be attributed to the properties of its electronic structure. The electronic calculations provided valuable insight into the decomposition sensitivity difference between TATP and DADP crystals.


nuclear Fukui function electronic perturbation Hellmann-Feynman force organic crystals unimolecular decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E. Decomposition of triacetone triperoxide is an entropic explosion. Journal of the American Chemical Society, 2005, 127(4): 1146–1159CrossRefGoogle Scholar
  2. 2.
    Oxley J C, Smith J L, Chen H. Decomposition of a multi-peroxidic compound: Triacetone triperoxide (tatp). Propellants, Explosives, Pyrotechnics, 2002, 27(4): 209–216CrossRefGoogle Scholar
  3. 3.
    Sanderson J R, Story P R. Macrocyclic synthesis. The thermal decomposition of dicyclohexylidene diperoxide and tricyclohexylidene triperoxide. Journal of Organic Chemistry, 1974, 39(24): 3463–3469CrossRefGoogle Scholar
  4. 4.
    van Duin A C T, Zeiri Y, Dubnikova F, Kosloff R, Goddard W A. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127(31): 11053–11062CrossRefGoogle Scholar
  5. 5.
    Evans H E, Tulleners F A J, Sanchez B L, Rasmussen C A. An unusual explosive, triacetone triperoxide. Journal of Forensic Sciences, 1986, 31(3): 1119–1125CrossRefGoogle Scholar
  6. 6.
    White G M. An explosive drug case. Journal of Forensic Sciences, 1992, 37(2): 652–656Google Scholar
  7. 7.
    Politzer P, Murray J S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 2002, 108(3): 134–142CrossRefGoogle Scholar
  8. 8.
    Parr R G, Yang W. Density-functional theory of atoms and molecules. New York: Oxford University Press, 1989Google Scholar
  9. 9.
    Parr R G, Yang W T. Density-functional theory of the electronicstructure of molecules. Annual Review of Physical Chemistry, 1995, 46(1): 701–728CrossRefGoogle Scholar
  10. 10.
    Kohn W, Becke A D, Parr R G. Density functional theory of electronic structure. Journal of Physical Chemistry, 1996, 100(31): 12974–12980CrossRefGoogle Scholar
  11. 11.
    Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chemical Reviews, 2003, 103(5): 1793–1873CrossRefGoogle Scholar
  12. 12.
    DeProft F, Liu S B, Geerlings P. Calculation of the nuclear fukui function and new relations for nuclear softness and hardness kernels. Journal of Chemical Physics, 1998, 108(18): 7549–7554CrossRefGoogle Scholar
  13. 13.
    Feynman R P. Forces in Molecules. Physical Review, 1939, 56(4): 340–343CrossRefGoogle Scholar
  14. 14.
    Hellmann H. Einfuhrung in die quantencheie. Deuticke, Vienna, 1937Google Scholar
  15. 15.
    Cohen MH, Gandugliapirovano MV, Kudrnovsky J. Electronic and nuclear-chemical reactivity. Journal of Chemical Physics, 1994, 101(10): 8988–8997CrossRefGoogle Scholar
  16. 16.
    Luty T, Ordon P, Eckhardt C J. A model for mechanochemical transformations: Applications to molecular hardness, instabilities, and shock initiation of reaction. Journal of Chemical Physics, 2002, 117(4): 1775–1785CrossRefGoogle Scholar
  17. 17.
    Pacheco-Londono L C, Primera-Pedrozo O M, Hernandez-Rivera S P. Experimental and theoretical model of reactivity and vibrational detectrion modes of triacetone triperoxide (TATP) and homologues. Proceedings of the SPIE-The International Society for Optical Engineering, 2004, 5617: 190–201Google Scholar
  18. 18.
    Ayers P W. The physical basis of the hard/soft acid/base principle. Faraday Discussions, 2007, 135: 161–190CrossRefGoogle Scholar
  19. 19.
    Ghanty T K, Ghosh S K. Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. Journal of Physical Chemistry, 1993, 97(19): 4951–4953CrossRefGoogle Scholar
  20. 20.
    Feng S X, Li T L. Understanding solid-state reactions of organic crystals with density functional theory-based concepts. Journal of Physical Chemistry A, 2005, 109(32): 7258–7263CrossRefGoogle Scholar
  21. 21.
    Li T L, Feng S X. Study of crystal packing on the solid-state reactivity of indomethacin with density functional theory. Pharmaceutical Research, 2005, 22(11): 1964–1969CrossRefGoogle Scholar
  22. 22.
    Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review B: Condensed Matter and Materials Physics, 1964, 136(3B): 864–871CrossRefGoogle Scholar
  23. 23.
    Guerra M. On the use of diffuse functions for estimating negative electron-affinities with lcao methods. Chemical Physics Letters, 1990, 167(4): 315–319CrossRefGoogle Scholar
  24. 24.
    Galbraith JM, Schaefer H F. Concerning the applicability of density functional methods to atomic and molecular negative ions. Journal of Chemical Physics, 1996, 105(2): 862–864CrossRefGoogle Scholar
  25. 25.
    De Proft F, Sablon N, Tozer D J, Geerlings P. Calculation of negative electron affinity and aqueous anion hardness using kohnsham homo and lumo energies. Faraday Discussions, 2007, 135: 151–159CrossRefGoogle Scholar
  26. 26.
    Tozer D J, De Proft F. Computation of the hardness and the problem of negative electron affinities in density functional theory. Journal of Physical Chemistry A, 2005, 109(39): 8923–8929CrossRefGoogle Scholar
  27. 27.
    Doll K, Saunders V R, Harrison N M. Analytical hartree-fock gradients for periodic systems. International Journal of Quantum Chemistry, 2001, 82(1): 1–13CrossRefGoogle Scholar
  28. 28.
    Groth P, Baxter R M, Sletten J, Nielsen P H, Lindberg A A, Jansen G, Lamm B, Samuelsson B. Crystal structure of 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexa-oxacyclononane (“Trimeric acetone peroxide”). Acta Chemica Scandinavica, 1969, 23(4): 1311–1329CrossRefGoogle Scholar
  29. 29.
    Gelalcha F G, Schulze B, Lönnecke P. 3,3,6,6-Tetramethyl-1,2,4,5-tetroxane: A twinned crystal structure. Acta Crystallographica. Section C, Crystal Structure Communications, 2004, 60(3): 180–182CrossRefGoogle Scholar
  30. 30.
    Murray J S, Concha M C, Politzer P. Links between surface electrostatic potentials of energetic molecules, impact sensitivities and c-no2/n-no2 bond dissociation energies. Molecular Physics, 2009, 107(1): 89–97CrossRefGoogle Scholar
  31. 31.
    Rice BM, Pai S V, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combustion and Flame, 1999, 118(3): 445–458CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA
  2. 2.Department of ChemistryLanzhou UniversityLanzhouChina
  3. 3.Industrial & Physical PharmacyPurdue UniversityWest LafayetteUSA

Personalised recommendations