Frontiers of Chemical Science and Engineering

, Volume 8, Issue 3, pp 353–361 | Cite as

Immobilization of β-glucuronidase in lysozyme-induced biosilica particles to improve its stability

  • Xiaokai Song
  • Zhongyi Jiang
  • Lin Li
  • Hong WuEmail author
Research Article


Mesoporous silica particles were prepared for efficient immobilization of the β-glucuronidase (GUS) through a biomimetic mineralization process, in which the solution containing lysozyme and GUS were added into the prehydrolyzed tetraethoxysilane (TEOS) solution. The silica particles were formed in a way of biomineralization under the catalysis of lysozyme and GUS was immobilized into the silica particles simultaneously during the precipitation process. The average diameter of the silica particles is about 200 nm with a pore size of about 4 nm. All the enzyme molecules are tightly entrapped inside the biosilica nanoparticles without any leaching even under a high ionic strength condition. The immobilized GUS exhibits significantly higher thermal and pH stability as well as the storage and recycling stability compared with GUS in free form. No loss in the enzyme activity of the immobilized GUS was found after 30-day’s storage, and the initial activity could be well retained after 12 repeated cycles.


silica nanoparticles biocatalysis biomimetic synthesis β-glucuronidase encapsulation storage and recycling stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee C H, Lin T S, Mou C Y. Mesoporous materials for encapsulating enzymes. Nano Today, 2009, 4(2): 165–179CrossRefGoogle Scholar
  2. 2.
    Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817): 258–268CrossRefGoogle Scholar
  3. 3.
    Bornscheuer U T. Immobilizing enzymes: How to create more suitable biocatalysts. Angewandte Chemie International Edition, 2003, 42(29): 3336–3337CrossRefGoogle Scholar
  4. 4.
    Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Science, 2008, 10(2): 250–261CrossRefGoogle Scholar
  5. 5.
    Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chemical Engineering Science, 2006, 61(3): 1017–1026CrossRefGoogle Scholar
  6. 6.
    Pioselli B, Bettati S, Mozzarelli A. Confinement and crowding effects on tryptophan synthase α 2 β 2 complex. FEBS Letters, 2005, 579(10): 2197–2202CrossRefGoogle Scholar
  7. 7.
    Reátegui E, Aksan A. Structural changes in confined lysozyme. Journal of biomechanical engineering, 2009, 131(7): 074520.1–074520.4CrossRefGoogle Scholar
  8. 8.
    Zhou H X. Protein folding in confined and crowded environments. Archives of Biochemistry and Biophysics, 2008, 469(1): 76–82CrossRefGoogle Scholar
  9. 9.
    Zhou H X. Protein folding and binding in confined spaces and in crowded solutions. Journal of Molecular Recognition, 2004, 17(5): 368–375CrossRefGoogle Scholar
  10. 10.
    Zhou H X, Dill K A. Stabilization of proteins in confined spaces. Biochemistry, 2001, 40(38): 11289–11293CrossRefGoogle Scholar
  11. 11.
    Avnir D, Coradin T, Lev O, Livage J. Recent bio-applications of solgel materials. Journal of Materials Chemistry, 2006, 16(11): 1013–1030CrossRefGoogle Scholar
  12. 12.
    Kim Y H, Lee I, Choi S H, Lee O K, Shim J, Lee J, Kim J, Lee E Y. Enhanced stability and reusability of marine epoxide hydrolase using ship-in-a-bottle approach with magnetically-separable mesoporous silica. Journal of Molecular Catalysis. B, Enzymatic, 2013, 89: 48–51CrossRefGoogle Scholar
  13. 13.
    Pastor I, Ferrer M L, Lillo M P, Gómez J, Mateo C R. Structure and dynamics of lysozyme encapsulated in a silica sol-gel matrix. Journal of Physical Chemistry B, 2007, 111(39): 11603–11610CrossRefGoogle Scholar
  14. 14.
    Khanna S, Goyal A, Moholkar V S. Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized clostridium pasteurianum on silica support. Biotechnology and Bioengineering, 2013, 110(6): 1637–1645CrossRefGoogle Scholar
  15. 15.
    Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 2004, 22(2): 211–213CrossRefGoogle Scholar
  16. 16.
    Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Materials, 2007, 6(6): 434–439CrossRefGoogle Scholar
  17. 17.
    Rusu V M, Ng C H, Wilke M, Tiersch B, Fratzl P, Peter M G. Sizecontrolled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 2005, 26(26): 5414–5426CrossRefGoogle Scholar
  18. 18.
    Zhang Y F, Wu H, Li L, Li J, Jiang Z Y, Jiang Y J, Chen Y. Enzymatic conversion of baicalin into baicalein by β-glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis. B, Enzymatic, 2009, 57(1–4): 130–135CrossRefGoogle Scholar
  19. 19.
    Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chemical Communications, 2004, (15): 1684–1685Google Scholar
  20. 20.
    Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845CrossRefGoogle Scholar
  21. 21.
    Zhang Y F, Wu H, Li J, Li L, Jiang Y J, Jiang Z Y, Jiang Z. Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation. Chemistry of Materials, 2008, 20(3): 1041–1048CrossRefGoogle Scholar
  22. 22.
    Naik R R, Brott L L, Clarson S J, Stone M O. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. Journal of Nanoscience and Nanotechnology, 2002, 2(1): 95–100CrossRefGoogle Scholar
  23. 23.
    Kroger N, Deutzmann R, Sumper M. Silica-precipitating peptides from diatoms. Journal of Biological Chemistry, 2001, 276(28): 26066–26070CrossRefGoogle Scholar
  24. 24.
    Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small, 2006, 2(5): 640–643CrossRefGoogle Scholar
  25. 25.
    Coradin T, Coupé A, Livage J. Interactions of bovine serum albumin and lysozyme with sodium silicate solutions. Colloids and Surfaces. B, Biointerfaces, 2003, 29(2–3): 189–196CrossRefGoogle Scholar
  26. 26.
    Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Synthesis of a cagelike hollow aluminosilicate with vermiculate micro-through-holes and its application to ship-in-bottle encapsulation of protein. Small, 2009, 5(1): 67–71CrossRefGoogle Scholar
  27. 27.
    Ramanathan M, Luckarift H R, Sarsenova A, Wild J R, Ramanculov E K, Olsen E V, Simonian A L. Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids and Surfaces. B, Biointerfaces, 2009, 73(1): 58–64CrossRefGoogle Scholar
  28. 28.
    Garakani T M, Wang H H, Krappitz T, Liebeck B M, Vanrijn P, Boker A. Lysozyme-silica hybrid materials: From nanoparticles to capsules and double emulsion mineral capsules. Chemical Communications, 2012, 48(82): 10210–10212CrossRefGoogle Scholar
  29. 29.
    Ivnitski D, Artyushkova K, Rincon R A, Atanassov P, Luckarift H R, Johnson G R. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer. Small, 2008, 4(3): 357–364CrossRefGoogle Scholar
  30. 30.
    Luckarift H R, Balasubramanian S, Paliwal S, Johnson G R, Simonian A L. Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids and Surfaces. B, Biointerfaces, 2007, 58(1): 28–33CrossRefGoogle Scholar
  31. 31.
    Cao X D, Yu J C, Zhang Z Q, Liu S Q. Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosensors & Bioelectronics, 2012, 35(1): 101–107CrossRefGoogle Scholar
  32. 32.
    Cushnie T, Lamb A J. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 2005, 26(5): 343–356CrossRefGoogle Scholar
  33. 33.
    Ma Z, Otsuyama K i, Liu S, Abroun S, Ishikawa H, Tsuyama N, Obata M, Li F J, Zheng X, Maki Y. Baicalein, a component of scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood, 2005, 105(8): 3312–3318CrossRefGoogle Scholar
  34. 34.
    Zhu J T, Choi R C, Chu G K, Cheung A W, Gao Q T, Li J, Jiang Z Y, Dong T T, Tsim KW. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2438–2445CrossRefGoogle Scholar
  35. 35.
    Matte C R, Nunes M R, Benvenutti E V, Schöffer J N, AyubM A Z, Hertz P F. Schöffer J d N, Ayub M A Z, Hertz P F. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a “spacer arm”. Journal of Molecular Catalysis. B, Enzymatic, 2012, 78: 51–56CrossRefGoogle Scholar
  36. 36.
    Martín M T, Plou F J, Alcalde M, Ballesteros A. Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 2003, 21(4–6): 299–308CrossRefGoogle Scholar
  37. 37.
    Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromolecular Bioscience, 2006, 6(10): 839–845CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiaokai Song
    • 1
  • Zhongyi Jiang
    • 1
    • 2
  • Lin Li
    • 1
  • Hong Wu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations